Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 26(26): 5872-5886, 2020 May 07.
Article in English | MEDLINE | ID: mdl-31999859

ABSTRACT

Uranium(IV) complexation by 2-furoic acid (2-FA) was examined to better understand the effects of ligand identity and reaction conditions on species formation and stability. Five compounds were isolated: [UCl2 (2-FA)2 (H2 O)2 ]n (1), [U4 Cl10 O2 (THF)6 (2-FA)2 ]⋅2 THF (2), [U6 O4 (OH)4 (H2 O)3 (2-FA)12 ]⋅7 THF⋅H2 O (3), [U6 O4 (OH)4 (H2 O)2 (2-FA)12 ]⋅8.76 H2 O (4), and [U38 Cl42 O54 (OH)2 (H2 O)20 ]⋅m H2 O⋅n THF (5). The structures were determined by single-crystal X-ray diffraction and further characterized by Raman, IR, and optical absorption spectroscopy. The thermal stability and magnetic behavior of the compounds were also examined. Variations in the synthetic conditions led to notable differences in the structural units observed in the solid state. At low H2 O/THF ratios, a tetranuclear oxo-bridged [U4 O2 ] core was isolated. Aging of this solution resulted in the formation a U38 oxo cluster capped by chloro and water ligands. However, at increasing water concentrations only hexanuclear units were observed. In all cases, at temperatures of 100-120 °C, UO2 nanoparticles formed.

2.
Inorg Chem ; 58(16): 10578-10591, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31298847

ABSTRACT

A series of eighteen tetravalent actinide (An = Th, U, Pu) compounds were synthesized from acidic aqueous solutions containing thorium, uranium, or plutonium and a series of protonated nitrogen heterocycles. The compounds were characterized using Raman, IR, and optical absorption spectroscopies. The structures were determined using single-crystal X-ray diffraction and found to consist of [An(H2O)xCly]4-y (x = 4-7 and y = 2-4) or AnCl62- molecular units. Breaks in the structural chemistry of the early actinides were observed, with Th adopting exclusively Th-aquo-chloro species and Pu forming only PuCl62-; U crystallized as both U-aquo-chloro and UCl62-. The relationship between the solid-state structural units and the solution species was interrogated using UV-vis-near-IR absorption spectroscopy. A comparison of the solution and solid-state spectra suggested that, although prevalent in the solid state, particularly for U and Pu, AnCl62- does not exist to an appreciable extent in the reaction solution. Despite the identification of U-aquo-chloro species in solution, there are limited reports of these complexes in the solid state. Isolation of these unique actinide(IV) chlorides as reported in this work may point to the importance of nonbonding interactions in the stabilization and precipitation of AnIV structural units.

3.
Inorg Chem ; 57(12): 7259-7269, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29877086

ABSTRACT

Organic ligands with carboxylate functionalities have been shown to affect the solubility, speciation, and overall chemical behavior of tetravalent metal ions. While many reports have focused on actinide complexation by relatively simple monocarboxylates such as amino acids, in this work we examined Th(IV) and U(IV) complexation by 4-hydroxybenzoic acid in water with the aim of understanding the impact that the organic backbone has on the solution and solid state structural chemistry of thorium(IV) and uranium(IV) complexes. Two compounds of the general formula [An6O4(OH)4(H2O)6(4-HB)12]· nH2O [An = Th (Th-1) and U (U-1); 4-HB = 4-hydroxybenzoate] were synthesized via room-temperature reactions of AnCl4 and 4-hydroxybenzoic acid in water. Solid state structures were determined by single-crystal X-ray diffraction, and the compounds were further characterized by Raman, infrared, and optical spectroscopies and thermogravimetry. The magnetism of U-1 was also examined. The structures of the Th and U compounds are isomorphous and are built from ligand-decorated oxo/hydroxo-bridged hexanuclear units. The relationship between the building units observed in the solid state structure of U-1 and those that exist in solution prior to crystallization as well as upon dissolution of U-1 in nonaqueous solvents was investigated using small-angle X-ray scattering, ultraviolet-visible optical spectroscopy, and dynamic light scattering. The evolution of U solution speciation as a function of reaction time and temperature was examined. Such effects as well as the impact of the ligand on the formation and evolution of hexanuclear U(IV) clusters to UO2 nanoparticles compared to prior reported monocarboxylate ligand systems are discussed. Unlike prior reported syntheses of Th and U(IV) hexamers where the pH was adjusted to ∼2 and 3, respectively, to drive hydrolysis, hexamer formation with the HB ligand appears to be promoted only by the ligand.

SELECTION OF CITATIONS
SEARCH DETAIL
...