Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2577, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531842

ABSTRACT

Substantial global attention is focused on how to reduce the risk of future pandemics. Reducing this risk requires investment in prevention, preparedness, and response. Although preparedness and response have received significant focus, prevention, especially the prevention of zoonotic spillover, remains largely absent from global conversations. This oversight is due in part to the lack of a clear definition of prevention and lack of guidance on how to achieve it. To address this gap, we elucidate the mechanisms linking environmental change and zoonotic spillover using spillover of viruses from bats as a case study. We identify ecological interventions that can disrupt these spillover mechanisms and propose policy frameworks for their implementation. Recognizing that pandemics originate in ecological systems, we advocate for integrating ecological approaches alongside biomedical approaches in a comprehensive and balanced pandemic prevention strategy.


Subject(s)
Pandemics , Viruses , Animals , Zoonoses/epidemiology , Ecosystem
2.
PeerJ ; 10: e14401, 2022.
Article in English | MEDLINE | ID: mdl-36530402

ABSTRACT

The field of animal movement ecology has advanced by leaps and bounds in the past few decades with the advent of sophisticated technology, advanced analytical tools, and multiple frameworks and paradigms to address key ecological problems. Unlike the longer history and faster growth of the field in North America, Europe, and Africa, movement ecology in Asia has only recently been gaining momentum. Here, we provide a review of the field from studies based in India over the last 11 years (2011-2021) curated from the database, Scopus, and search engine, Google Scholar. We identify current directions in the research objectives, taxa studied, tracking technology and the biogeographic regions in which animals were tracked, considering the years since the last systematic review of movement ecology research in the country. As an indication of the growing interest in this field, there has been a rapid increase in the number of publications over the last decade. Class Mammalia continues to dominate the taxa tracked, with tiger and leopard being the most common species studied across publications. Invertebrates and other small and medium-sized animals, as well as aquatic animals, in comparison, are understudied and remain among the important target taxa for tracking in future studies. As in the previous three decades, researchers have focussed on characterising home ranges and habitat use of animals. There is, however, a notable shift to examine the movement decision of animals in human-modified landscapes, although efforts to use movement ecology to understand impacts of climate change remain missing. Given the biogeographic and taxonomic diversity of India, and the fact that the interface between anthropogenic activity and wildlife interactions is increasing, we suggest ways in which the field of movement ecology can be expanded to facilitate ecological insights and conservation efforts. With the advancement of affordable technologies and the availability of analytical tools, the potential to expand the field of movement ecology, shift research foci, and gain new insights is now prime.


Subject(s)
Animal Migration , Animals , Animals, Wild , Ecology , Ecosystem , India/epidemiology , Panthera , Prospective Studies , Tigers
3.
PLOS Glob Public Health ; 2(3): e0000075, 2022.
Article in English | MEDLINE | ID: mdl-36962247

ABSTRACT

There is increased global and national attention on the need for effective strategies to control zoonotic diseases. Quick, effective action is, however, hampered by poor evidence-bases and limited coordination between stakeholders from relevant sectors such as public and animal health, wildlife and forestry sectors at different scales, who may not usually work together. The OneHealth approach recognises the value of cross-sectoral evaluation of human, animal and environmental health questions in an integrated, holistic and transdisciplinary manner to reduce disease impacts and/or mitigate risks. Co-production of knowledge is also widely advocated to improve the quality and acceptability of decision-making across sectors and may be particularly important when it comes to zoonoses. This paper brings together OneHealth and knowledge co-production and reflects on lessons learned for future OneHealth co-production processes by describing a process implemented to understand spill-over and identify disease control and mitigation strategies for a zoonotic disease in Southern India (Kyasanur Forest Disease). The co-production process aimed to develop a joint decision-support tool with stakeholders, and we complemented our approach with a simple retrospective theory of change on researcher expectations of the system-level outcomes of the co-production process. Our results highlight that while co-production in OneHealth is a difficult and resource intensive process, requiring regular iterative adjustments and flexibility, the beneficial outcomes justify its adoption. A key future aim should be to improve and evaluate the degree of inter-sectoral collaboration required to achieve the aims of OneHealth. We conclude by providing guidelines based on our experience to help funders and decision-makers support future co-production processes.

4.
PLoS Negl Trop Dis ; 15(4): e0009243, 2021 04.
Article in English | MEDLINE | ID: mdl-33793560

ABSTRACT

Zoonoses disproportionately affect tropical communities and are associated with human modification and use of ecosystems. Effective management is hampered by poor ecological understanding of disease transmission and often focuses on human vaccination or treatment. Better ecological understanding of multi-vector and multi-host transmission, social and environmental factors altering human exposure, might enable a broader suite of management options. Options may include "ecological interventions" that target vectors or hosts and require good knowledge of underlying transmission processes, which may be more effective, economical, and long lasting than conventional approaches. New frameworks identify the hierarchical series of barriers that a pathogen needs to overcome before human spillover occurs and demonstrate how ecological interventions may strengthen these barriers and complement human-focused disease control. We extend these frameworks for vector-borne zoonoses, focusing on Kyasanur Forest Disease Virus (KFDV), a tick-borne, neglected zoonosis affecting poor forest communities in India, involving complex communities of tick and host species. We identify the hierarchical barriers to pathogen transmission targeted by existing management. We show that existing interventions mainly focus on human barriers (via personal protection and vaccination) or at barriers relating to Kyasanur Forest Disease (KFD) vectors (tick control on cattle and at the sites of host (monkey) deaths). We review the validity of existing management guidance for KFD through literature review and interviews with disease managers. Efficacy of interventions was difficult to quantify due to poor empirical understanding of KFDV-vector-host ecology, particularly the role of cattle and monkeys in the disease transmission cycle. Cattle are hypothesised to amplify tick populations. Monkeys may act as sentinels of human infection or are hypothesised to act as amplifying hosts for KFDV, but the spatial scale of risk arising from ticks infected via monkeys versus small mammal reservoirs is unclear. We identified 19 urgent research priorities for refinement of current management strategies or development of ecological interventions targeting vectors and host barriers to prevent disease spillover in the future.


Subject(s)
Disease Reservoirs/veterinary , Encephalitis Viruses, Tick-Borne/isolation & purification , Kyasanur Forest Disease/veterinary , Mammals , Zoonoses/epidemiology , Animals , Animals, Wild , Disease Reservoirs/virology , Ecosystem , Encephalitis Viruses, Tick-Borne/physiology , India/epidemiology , Kyasanur Forest Disease/epidemiology , Kyasanur Forest Disease/virology , Zoonoses/virology
5.
J Indian Inst Sci ; 100(4): 717-723, 2020.
Article in English | MEDLINE | ID: mdl-33046950

ABSTRACT

Scientists all over the world are moving toward building database systems based on the One Health concept to prevent and manage outbreaks of zoonotic diseases. An appreciation of the process of discovery with incomplete information and a recognition of the role of observations gathered painstakingly by scientists in the field shows that simple databases will not be sufficient to build causal models of the complex relationships between human health and ecosystems. Rather, it is important also to build knowledge bases which complement databases using non-monotonic logic based artificial intelligence techniques, so that causal models can be improved as new, and sometimes contradictory, information is found from field studies.

6.
PLoS Negl Trop Dis ; 14(4): e0008179, 2020 04.
Article in English | MEDLINE | ID: mdl-32255797

ABSTRACT

Zoonotic diseases affect resource-poor tropical communities disproportionately, and are linked to human use and modification of ecosystems. Disentangling the socio-ecological mechanisms by which ecosystem change precipitates impacts of pathogens is critical for predicting disease risk and designing effective intervention strategies. Despite the global "One Health" initiative, predictive models for tropical zoonotic diseases often focus on narrow ranges of risk factors and are rarely scaled to intervention programs and ecosystem use. This study uses a participatory, co-production approach to address this disconnect between science, policy and implementation, by developing more informative disease models for a fatal tick-borne viral haemorrhagic disease, Kyasanur Forest Disease (KFD), that is spreading across degraded forest ecosystems in India. We integrated knowledge across disciplines to identify key risk factors and needs with actors and beneficiaries across the relevant policy sectors, to understand disease patterns and develop decision support tools. Human case locations (2014-2018) and spatial machine learning quantified the relative role of risk factors, including forest cover and loss, host densities and public health access, in driving landscape-scale disease patterns in a long-affected district (Shivamogga, Karnataka State). Models combining forest metrics, livestock densities and elevation accurately predicted spatial patterns in human KFD cases (2014-2018). Consistent with suggestions that KFD is an "ecotonal" disease, landscapes at higher risk for human KFD contained diverse forest-plantation mosaics with high coverage of moist evergreen forest and plantation, high indigenous cattle density, and low coverage of dry deciduous forest. Models predicted new hotspots of outbreaks in 2019, indicating their value for spatial targeting of intervention. Co-production was vital for: gathering outbreak data that reflected locations of exposure in the landscape; better understanding contextual socio-ecological risk factors; and tailoring the spatial grain and outputs to the scale of forest use, and public health interventions. We argue this inter-disciplinary approach to risk prediction is applicable across zoonotic diseases in tropical settings.


Subject(s)
Disease Outbreaks , Kyasanur Forest Disease/epidemiology , Zoonoses/epidemiology , Animal Distribution , Animals , Biodiversity , Disease Susceptibility , Forests , Humans , India/epidemiology , Population Density , Risk Factors , Spatial Regression
8.
Conserv Biol ; 27(4): 832-43, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23772986

ABSTRACT

Sport hunting is often proposed as a tool to support the conservation of large carnivores. However, it is challenging to provide tangible economic benefits from this activity as an incentive for local people to conserve carnivores. We assessed economic gains from sport hunting and poaching of leopards (Panthera pardus), costs of leopard depredation of livestock, and attitudes of people toward leopards in Niassa National Reserve, Mozambique. We sent questionnaires to hunting concessionaires (n = 8) to investigate the economic value of and the relative importance of leopards relative to other key trophy-hunted species. We asked villagers (n = 158) the number of and prices for leopards poached in the reserve and the number of goats depredated by leopard. Leopards were the mainstay of the hunting industry; a single animal was worth approximately U.S.$24,000. Most safari revenues are retained at national and international levels, but poached leopard are illegally traded locally for small amounts ($83). Leopards depredated 11 goats over 2 years in 2 of 4 surveyed villages resulting in losses of $440 to 6 households. People in these households had negative attitudes toward leopards. Although leopard sport hunting generates larger gross revenues than poaching, illegal hunting provides higher economic benefits for households involved in the activity. Sport-hunting revenues did not compensate for the economic losses of livestock at the household level. On the basis of our results, we propose that poaching be reduced by increasing the costs of apprehension and that the economic benefits from leopard sport hunting be used to improve community livelihoods and provide incentives not to poach.


Subject(s)
Animal Husbandry/economics , Conservation of Natural Resources/economics , Conservation of Natural Resources/legislation & jurisprudence , Conservation of Natural Resources/methods , Panthera/physiology , Travel/economics , Animals , Cost-Benefit Analysis , Law Enforcement/methods , Mozambique , Surveys and Questionnaires
9.
PLoS One ; 7(6): e38363, 2012.
Article in English | MEDLINE | ID: mdl-22761680

ABSTRACT

BACKGROUND: The identification of temporal thresholds or shifts in animal movement informs ecologists of changes in an animal's behaviour, which contributes to an understanding of species' responses in different environments. In African savannas, rainfall, temperature and primary productivity influence the movements of large herbivores and drive changes at different scales. Here, we developed a novel approach to define seasonal shifts in movement behaviour by examining the movements of a highly mobile herbivore (elephant; Loxodonta africana), in relation to local and regional rainfall patterns. METHODOLOGY/PRINCIPAL FINDINGS: We used speed to determine movement changes of between 8 and 14 GPS-collared elephant cows, grouped into five spatial clusters, in Kruger National Park, South Africa. To detect broad-scale patterns of movement, we ran a three-year daily time-series model for each individual (2007-2009). Piecewise regression models provided the best fit for elephant movement, which exhibited a segmented, waveform pattern over time. Major breakpoints in speed occurred at the end of the dry and wet seasons of each year. During the dry season, female elephant are constrained by limited forage and thus the distances they cover are shorter and less variable. Despite the inter-annual variability of rainfall, speed breakpoints were strongly correlated with both local and regional rainfall breakpoints across all three years. Thus, at a multi-year scale, rainfall patterns significantly affect the movements of elephant. The variability of both speed and rainfall breakpoints across different years highlights the need for an objective definition of seasonal boundaries. CONCLUSIONS/SIGNIFICANCE: By using objective criteria to determine behavioural shifts, we identified a biologically meaningful indicator of major changes in animal behaviour in different years. We recommend the use of such criteria, from an animal's perspective, for delineating seasons or other extrinsic shifts in ecological studies, rather than arbitrarily fixed definitions based on convention or common practice.


Subject(s)
Animal Migration/physiology , Behavior, Animal , Ecosystem , Elephants/physiology , Rain , Seasons , Animals , Environment , Female , South Africa , Temperature
10.
Ecology ; 92(2): 398-407, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21618919

ABSTRACT

Studies that focus on single predator-prey interactions can be inadequate for understanding antipredator responses in multi-predator systems. Yet there is still a general lack of information about the strategies of prey to minimize predation risk from multiple predators at the landscape level. Here we examined the distribution of seven African ungulate species in the fenced Karongwe Game Reserve (KGR), South Africa, as a function of predation risk from all large carnivore species (lion, leopard, cheetah, African wild dog, and spotted hyena). Using observed kill data, we generated ungulate-specific predictions of relative predation risk and of riskiness of habitats. To determine how ungulates minimize predation risk at the landscape level, we explicitly tested five hypotheses consisting of strategies that reduce the probability of encountering predators, and the probability of being killed. All ungulate species avoided risky habitats, and most selected safer habitats, thus reducing their probability of being killed. To reduce the probability of encountering predators, most of the smaller prey species (impala, warthog, waterbuck, kudu) avoided the space use of all predators, while the larger species (wildebeest, zebra, giraffe) only avoided areas where lion and leopard space use were high. The strength of avoidance for the space use of predators generally did not correspond to the relative predation threat from those predators. Instead, ungulates used a simpler behavioral rule of avoiding the activity areas of sit-and-pursue predators (lion and leopard), but not those of cursorial predators (cheetah and African wild dog). In general, selection and avoidance of habitats was stronger than avoidance of the predator activity areas. We expect similar decision rules to drive the distribution pattern of ungulates in other African savannas and in other multi-predator systems, especially where predators differ in their hunting modes.


Subject(s)
Antelopes/physiology , Carnivora/physiology , Equidae/physiology , Predatory Behavior , Swine/physiology , Animals , Demography
11.
PLoS One ; 5(9)2010 Sep 20.
Article in English | MEDLINE | ID: mdl-20862216

ABSTRACT

BACKGROUND: Group dynamics of gregarious ungulates in the grasslands of the African savanna have been well studied, but the trade-offs that affect grouping of these ungulates in woodland habitats or dense vegetation are less well understood. We examined the landscape-level distribution of groups of blue wildebeest, Connochaetes taurinus, and Burchell's zebra, Equus burchelli, in a predominantly woodland area (Karongwe Game Reserve, South Africa; KGR) to test the hypothesis that group dynamics are a function of minimizing predation risk from their primary predator, lion, Panthera leo. METHODOLOGY/PRINCIPAL FINDINGS: Using generalized linear models, we examined the relative importance of habitat type (differing in vegetation density), probability of encountering lion (based on utilization distribution of all individual lions in the reserve), and season in predicting group size and composition. We found that only in open scrub habitat, group size for both ungulate species increased with the probability of encountering lion. Group composition differed between the two species and was driven by habitat selection as well as predation risk. For both species, composition of groups was, however, dominated by males in open scrub habitats, irrespective of the probability of encountering lion. CONCLUSIONS/SIGNIFICANCE: Distribution patterns of wildebeest and zebra groups at the landscape level directly support the theoretical and empirical evidence from a range of taxa predicting that grouping is favored in open habitats and when predation risk is high. Group composition reflected species-specific social, physiological and foraging constraints, as well as the importance of predation risk. Avoidance of high resource open scrub habitat by females can lead to loss of foraging opportunities, which can be particularly costly in areas such as KGR, where this resource is limited. Thus, landscape-level grouping dynamics are species specific and particular to the composition of the group, arising from a tradeoff between maximizing resource selection and minimizing predation risk.


Subject(s)
Ecosystem , Equidae/physiology , Predatory Behavior , Ruminants/physiology , Animals , Animals, Wild/physiology , Female , Lions/physiology , Male , Population Density , Population Dynamics , South Africa
12.
Am Nat ; 175(1): 50-60, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19922261

ABSTRACT

Elevated plasma corticosterone during stressful events is linked to rapid changes in behavior in vertebrates and can mediate learning and memory consolidation. We tested the importance of acute corticosterone elevation in aversive learning of a novel stressor by wild male eastern fence lizards (Sceloporus undulatus). We found that inhibiting corticosterone elevation (using metyrapone, a corticosterone synthesis blocker) during an encounter with a novel attacker impaired immediate escape responses and limited learning and recall during future encounters. In the wild and in outdoor enclosures, lizards whose acute corticosterone response was blocked by an earlier metyrapone injection did not alter their escape behavior during repeated encounters with the attacker. Control-injected (unblocked) lizards, however, progressively increased flight initiation distance and decreased hiding duration during subsequent encounters. Aversive responses were also initially higher for control lizards exposed to a higher intensity first attack. Further, we demonstrate a role of corticosterone elevation in recollection, since unblocked lizards had heightened antipredator responses 24-28 h later. Exogenously restoring corticosterone levels in metyrapone-injected lizards maintained aversive behaviors and learning at control (unblocked) levels. We suggest that the corticosterone mediation of antipredator behaviors and aversive learning is a critical and general mechanism for the behavioral flexibility of vertebrate prey.


Subject(s)
Avoidance Learning , Corticosterone/blood , Escape Reaction , Lizards/physiology , Stress, Physiological , Animals , Behavior, Animal/drug effects , Corticosterone/physiology , Enzyme Inhibitors , Female , Lizards/metabolism , Male , Metyrapone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...