Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Obes ; 10(4): 320-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25405847

ABSTRACT

BACKGROUND/OBJECTIVES: Although newer approaches have identified several metabolites associated with obesity, there is paucity of such information in paediatric populations, especially among Mexican-Americans (MAs) who are at high risk of obesity. Therefore, we performed a global serum metabolite screening in MA children to identify biomarkers of childhood obesity. METHODS: We selected 15 normal-weight, 13 overweight and 14 obese MA children (6-17 years) and performed global serum metabolite screening using ultra-performance liquid chromatography/quadruple orthogonal acceleration time of flight tandem micro mass spectrometer. Metabolite values were analysed to assess mean differences among groups using one-way analysis of variance, to test for linear trend across groups and to examine Pearson's correlations between them and seven cardiometabolic traits (CMTs): body mass index, waist circumference, systolic blood pressure, diastolic blood pressure, homeostasis model of assessment-insulin resistance, triglycerides and high-density lipoprotein cholesterol. RESULTS: We identified 14 metabolites exhibiting differences between groups as well as linear trend across groups with nominal statistical significance. After adjustment for multiple testing, mean differences and linear trends across groups remained significant (P < 5.9 × 10(-5) ) for L-thyronine, bradykinin and naringenin. Of the examined metabolite-CMT trait pairs, all metabolites except for 2-methylbutyroylcarnitine were nominally associated with two or more CMTs, some exhibiting significance even after accounting for multiple testing (P < 3.6 × 10(-3) ). CONCLUSIONS: To our knowledge, this study - albeit pilot in nature - is the first study to identify these metabolites as novel biomarkers of childhood obesity and its correlates. These findings signify the need for future systematic investigations of metabolic pathways underlying childhood obesity.


Subject(s)
Insulin Resistance , Mexican Americans , Pediatric Obesity/blood , Adolescent , Biomarkers/blood , Blood Pressure , Body Mass Index , C-Reactive Protein/metabolism , Chemokine CCL2/blood , Child , Cholesterol, HDL/blood , Cytokines/blood , Female , Humans , Insulin/blood , Interleukin-6/blood , Leptin/blood , Lipids/blood , Male , Pediatric Obesity/ethnology , Pediatric Obesity/prevention & control , Reference Values , Risk Factors , Tumor Necrosis Factor-alpha/blood , United States/epidemiology , Waist Circumference
2.
Carcinogenesis ; 29(4): 790-6, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18024478

ABSTRACT

We have shown that dietary fish oil and pectin (FP) protects against radiation-enhanced colon cancer by upregulating apoptosis in colonic mucosa. To investigate the mechanism of action, we provided rats (n = 40) with diets containing the combination of FP or corn oil and cellulose (CC) prior to exposure to 1 Gy, 1 GeV/nucleon Fe-ion. All rats were injected with a colon-specific carcinogen, azoxymethane (AOM; 15 mg/kg), 10 and 17 days after irradiation. Levels of colonocyte apoptosis, prostaglandin E(2) (PGE(2)), PGE(3), microsomal prostaglandin E synthase-2 (mPGES-2), total beta-catenin, nuclear beta-catenin staining (%) and peroxisome proliferator-activated receptor delta (PPARdelta) expression were quantified 31 weeks after the last AOM injection. FP induced a higher (P < 0.01) apoptotic index in both treatment groups, which was associated with suppression (P < 0.05) of antiapoptotic mediators in the cyclooxygenase (COX) pathway (mPGES-2 and PGE(2)) and the Wnt/beta-catenin pathway [total beta-catenin and nuclear beta-catenin staining (%); P < 0.01] compared with the CC diet. Downregulation of COX and Wnt/beta-catenin pathways was associated with a concurrent suppression (P < 0.05) of PPARdelta levels in FP-fed rats. In addition, colonic mucosa from FP animals contained (P < 0.05) a proapoptotic, eicosapentaenoic acid-derived COX metabolite, PGE(3). These results indicate that FP enhances colonocyte apoptosis in AOM-alone and irradiated AOM rats, in part through the suppression of PPARdelta and PGE(2) and elevation of PGE(3). These data suggest that the dietary FP combination may be used as a possible countermeasure to colon carcinogenesis, as apoptosis is enhanced even when colonocytes are exposed to radiation and/or an alkylating agent.


Subject(s)
Alprostadil/analogs & derivatives , Apoptosis/drug effects , Colon/physiology , Colonic Neoplasms/prevention & control , Dinoprostone/antagonists & inhibitors , Fish Oils/pharmacology , Intestinal Mucosa/physiology , PPAR delta/antagonists & inhibitors , Pectins/pharmacology , Alprostadil/metabolism , Animals , Colon/cytology , Colon/drug effects , Colon/radiation effects , Dietary Fats , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Intestinal Mucosa/radiation effects , Male , Neoplasms, Radiation-Induced/prevention & control , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...