Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 10(6)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32492775

ABSTRACT

The Copper-cysteamine (Cu-Cy) nanoparticle is a novel sensitizer with a potential to increase the effectiveness of radiation therapy for cancer treatment. In this work, the effect of nanoparticle size and the energy of X-rays on the effectiveness of radiation therapy are investigated. The effect of the particle size on their performance is very complicated. The nanoparticles with an average size of 300 nm have the most intense photoluminescence, the nanoparticles with the average size of 100 nm have the most reactive oxygen species production upon X-ray irradiation, while the nanoparticles with the average size of 40 nm have the best outcome in the tumor suppression in mice upon X-ray irradiation. For energy, 90 kVp radiation resulted in smaller tumor sizes than 250 kVp or 350 kVp radiation energies. Overall, knowledge of the effect of nanoparticle size and radiation energy on radiation therapy outcomes could be useful for future applications of Cu-Cy nanoparticles.

2.
Proc Natl Acad Sci U S A ; 116(34): 16823-16828, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31371494

ABSTRACT

Photodynamic therapy (PDT), a treatment that uses a photosensitizer, molecular oxygen, and light to kill target cells, is a promising cancer treatment method. However, a limitation of PDT is its dependence on light that is not highly penetrating, precluding the treatment of tumors located deep in the body. Copper-cysteamine nanoparticles are a new type of photosensitizer that can generate cytotoxic singlet oxygen molecules upon activation by X-rays. In this paper, we report on the use of copper-cysteamine nanoparticles, designed to be targeted to tumors, for X-ray-induced PDT. In an in vivo study, results show a statistically significant reduction in tumor size under X-ray activation of pH-low insertion peptide-conjugated, copper-cysteamine nanoparticles in mouse tumors. This work confirms the effectiveness of copper-cysteamine nanoparticles as a photosensitizer when activated by radiation and suggests that these Cu-Cy nanoparticles may be good candidates for PDT in deeply seated tumors when combined with X-rays and conjugated to a tumor-targeting molecule.


Subject(s)
Copper/therapeutic use , Cysteamine/therapeutic use , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Neoplasms/radiotherapy , Photochemotherapy , Animals , Cell Line, Tumor , Female , Hydrogen-Ion Concentration , Male , Mice, Inbred BALB C , Nanoparticles/ultrastructure , Peptides/chemistry , Tumor Burden , X-Rays
3.
J Biomed Nanotechnol ; 15(9): 1960-1967, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31387682

ABSTRACT

Gold nanoparticles are a potential method for enhancing radiation therapy, causing extra damage to tumors when irradiated through the Auger effect. One of the major obstacles to using gold nanoparticles in human trials is the relatively large amount of gold required. This paper details an experiment where a relatively small amount of gold (200 µg) was used to significantly reduce tumor volume in mice, as well as the results of an inter-tissue biodistribution experiment. Using a longitudinal analysis, tumor size as a function of time was found to be significantly reduced when mice were given 200 µg of gold nanoparticles and 20 Gray of radiation, compared to radiation alone. 200 µg in a 20-gram mouse would be mass equivalent to 750 mg of gold in a 75 kg person. Biodistribution measurements demonstrated that gold nanoparticles stayed in the tumor for at least one week after injection when targeted to tumors using pH-Low Insertion Peptide and intratumoral injections. These results show gold nanoparticles to be effective at one of the smallest amounts of gold ever attempted in a mouse, and showed that tumor targeting has the potential to keep gold nanoparticles available in tumors long enough to be beneficial to fractionated radiation treatments (a key component of radiation therapy in the clinic).


Subject(s)
Metal Nanoparticles , Neoplasms , Animals , Gold , Mice , Tissue Distribution , Tumor Burden
4.
J Comput Biol ; 24(12): 1265-1274, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29035581

ABSTRACT

Biological indicators would be of use in radiation dosimetry in situations where an exposed person is not wearing a dosimeter, or when physical dosimeters are insufficient to estimate the risk caused by the radiation exposure. In this work, we investigate the use of gene expression as a dosimeter. Gene expression analysis was done on 15,222 genes of Drosophila melanogaster (fruit flies) at days 2, 10, and 20 postirradiation, with X-ray exposures of 10, 1000, 5000, 10,000, and 20,000 roentgens. Several genes were identified, which could serve as a biodosimeter in an irradiated D. melanogaster model. Many of these genes have human homologues. Six genes showed a linear response (R2 > 0.9) with dose at all time points. One of these genes, inverted repeat-binding protein, is a known DNA repair gene and has a human homologue (XRCC6). The lowest dose, 10 roentgen, is very low for fruit flies. If the lowest dose is excluded, 13 genes showed a linear response with dose at all time points. This includes 5 of 6 genes that were linear with all radiation doses included. Of these 13 genes, 4 have human homologues and 8 have known functions. The expression of this panel of genes, particularly those with human homologues, could potentially be used as the biological indicator of radiation exposure in dosimetry applications.


Subject(s)
Drosophila melanogaster/genetics , Drosophila melanogaster/radiation effects , Gene Expression Profiling/methods , Gene Expression Regulation/radiation effects , Animals , Drosophila melanogaster/growth & development , Radiation Exposure , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...