Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 49: 102218, 2022 02.
Article in English | MEDLINE | ID: mdl-34952463

ABSTRACT

Redox metabolism plays essential functions in the pathology of cancer and many other diseases. While several radiotracers for imaging redox metabolism have been developed, there are no reports of radiotracers for in vivo imaging of protein oxidation. Here we take the first step towards this goal and describe the synthesis and kinetic properties of a new positron emission tomography (PET) [18F]Fluoro-DCP radiotracer for in vivo imaging of protein sulfenylation. Time course biodistribution and PET/CT studies using xenograft animal models of Head and Neck Squamous Cell Cancer (HNSCC) demonstrate its capability to distinguish between tumors with radiation sensitive and resistant phenotypes consistent with previous reports of decreased protein sulfenylation in clinical specimens of radiation resistant HNSCC. We envision further development of this technology to aid research efforts towards improving diagnosis of patients with radiation resistant tumors.


Subject(s)
Fluorodeoxyglucose F18 , Head and Neck Neoplasms , Animals , Head and Neck Neoplasms/diagnostic imaging , Humans , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Tissue Distribution
2.
Antioxidants (Basel) ; 8(11)2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31739476

ABSTRACT

Silver nanoparticles (AgNPs) are widely used nanomaterials in both commercial and clinical biomedical applications, due to their antibacterial properties. AgNPs are also being explored for the treatment of cancer in particular in combination with ionizing radiation. In this work, we studied the effects of AgNPs and ionizing radiation on mitochondrial redox state and function in a panel of lung cell lines (A549, BEAS-2B, Calu-1 and NCI-H358). The exposure to AgNPs caused cell cycle arrest and decreased cell proliferation in A549, BEAS-2B and Calu-1, but not in NCI-H358. The mitochondrial reactive oxygen species (ROS) and protein oxidation increased in a time- and dose-dependent manner in the more sensitive cell lines with the AgNP exposure, but not in NCI-H358. While ionizing radiation also induced changes in the mitochondrial redox profiles, in general, these were not synergistic with the effects of AgNPs with the exception of NCI-H358 and only at a higher dose of radiation.

3.
Chem Res Toxicol ; 32(3): 526-534, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30784263

ABSTRACT

Redox-mediated protein modifications control numerous processes in both normal and disease metabolism. Protein sulfenic acids, formed from the oxidation of protein cysteine residues, play a critical role in thiol-based redox signaling. The reactivity of protein sulfenic acids requires their identification through chemical trapping, and this paper describes the use of the triphenylphosphonium (TPP) ion to direct known sulfenic acid traps to the mitochondria, a verified source of cellular reactive oxygen species. Coupling of the TPP group with the 2,4-(dioxocyclohexyl)propoxy (DCP) unit and the bicyclo[6.1.0]nonyne (BCN) group produces two new probes, DCP-TPP and BCN-TPP. DCP-TPP and BCN-TPP react with C165A AhpC-SOH, a model protein sulfenic acid, to form the expected adducts with second-order rate constants of k = 1.1 M-1 s-1 and k = 5.99 M-1 s-1, respectively, as determined by electrospray ionization time-of-flight mass spectrometry. The TPP group does not alter the rate of DCP-TPP reaction with protein sulfenic acid compared to dimedone but slows the rate of BCN-TPP reaction compared to a non-TPP-containing BCN-OH control by 4.6-fold. The hydrophobic TPP group may interact with the protein, preventing an optimal reaction orientation for BCN-TPP. Unlike BCN-OH, BCN-TPP does not react with the protein persulfide, C165A AhpC-SSH. Extracellular flux measurements using A549 cells show that DCP-TPP and BCN-TPP influence mitochondrial energetics, with BCN-TPP producing a drastic decrease in basal respiration, perhaps due to its faster reaction kinetics with sulfenylated proteins. Further control experiments with BCN-OH, TPP-COOH, and dimedone provide strong evidence for mitochondrial localization and accumulation of DCP-TPP and BCN-TPP. These results reveal the compatibility of the TPP group with reactive sulfenic acid probes as a mitochondrial director and support the use of the TPP group in the design of sulfenic acid traps.


Subject(s)
Mitochondria/drug effects , Organophosphorus Compounds/chemical synthesis , Organophosphorus Compounds/pharmacology , Proteins/chemistry , Sulfenic Acids/analysis , A549 Cells , Humans , Mitochondria/metabolism , Molecular Probes/chemistry , Molecular Structure , Organophosphorus Compounds/chemistry
4.
Sci Rep ; 8(1): 6635, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29703899

ABSTRACT

Mitochondrial reactive oxygen species (ROS) are essential regulators of cellular signaling, metabolism and epigenetics underlying the pathophysiology of numerous diseases. Despite the critical function of redox regulation in mitochondria, currently there are limited methods available to monitor protein oxidation in this key subcellular organelle. Here, we describe compounds for imaging sulfenylated proteins in mitochondria: DCP-NEt2-Coumarin (DCP-NEt2C) and rhodamine-based DCP-Rho1. Side-by-side comparison studies are presented on the reactivity of DCP-NEt2C and DCP-Rho1 with a model protein sulfenic acid (AhpC-SOH) and mitochondrial localization to identify optimized experimental conditions for labeling and visualization of protein sulfenylation that would be independent of mitochondria membrane potential and would not impact mitochondrial function. These probes are applied to image mitochondrial protein sulfenylation under conditions of serum starvation and in a cell culture model of lung cancer exposed to ionizing radiation and silver nanoparticles, agents serving dual functions as environmental stressors and cancer therapeutics.


Subject(s)
Cytological Techniques/methods , Indicators and Reagents/chemical synthesis , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Molecular Probes/chemical synthesis , Protein Processing, Post-Translational , Staining and Labeling/methods , A549 Cells , Humans , Oxidation-Reduction , Sulfenic Acids/metabolism
5.
J Biomol Struct Dyn ; 36(8): 1934-1947, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28592206

ABSTRACT

Interleukin 6 (IL6), an inflammatory response protein has major implications in immune-related inflammatory diseases. Identification of aptamers for the IL6 protein aids in diagnostic, therapeutic, and theranostic applications. Three different DNA aptamers and their interactions with IL6 protein were extensively investigated in a phosphate buffed saline (PBS) solution. Molecular-level modeling through molecular dynamics provided insights of structural, conformational changes and specific binding domains of these protein-aptamer complexes. Multiple simulations reveal consistent binding region for all protein-aptamer complexes. Conformational changes coupled with quantitative analysis of center of mass (COM) distance, radius of gyration (Rg), and number of intermolecular hydrogen bonds in each IL6 protein-aptamer complex was used to determine their binding performance strength and obtain molecular configurations with strong binding. A similarity comparison of the molecular configurations with strong binding from molecular-level modeling concurred with Surface Plasmon Resonance imaging (SPRi) for these three aptamer complexes, thus corroborating molecular modeling analysis findings. Insights from the natural progression of IL6 protein-aptamer binding modeled in this work has identified key features such as the orientation and location of the aptamer in the binding event. These key features are not readily feasible from wet lab experiments and impact the efficacy of the aptamers in diagnostic and theranostic applications.


Subject(s)
Aptamers, Nucleotide/chemistry , Interleukin-6/chemistry , Molecular Dynamics Simulation , Surface Plasmon Resonance/methods , Aptamers, Nucleotide/metabolism , Hydrogen Bonding , Interleukin-6/metabolism , Kinetics , Nucleic Acid Conformation , Protein Binding , Protein Conformation
6.
Sci Rep ; 4: 5129, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24875139

ABSTRACT

Diagnostic biomarkers (i.e. proteins) are often in low abundance in bodily fluids presenting many challenges for their detection. In order to extend the application of SPRi systems in detecting biomarkers at ultralow levels, we combine the advantage of aptamer technology with nanomaterials and microwave-assisted surface functionalization. By implementing a sandwich assay through the introduction of aptamer-modified quantum dots (QDs), it was possible to measure 7 zeptomole (at 5 fg/mL) of C-reactive protein (CRP) selectively in spiked human serum. It is expected that the proposed platform will provide new direction in designing ultrasensitive SPRi biosensors with multiplexing capabilities.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/instrumentation , C-Reactive Protein/analysis , Metal Nanoparticles/chemistry , Quantum Dots , Surface Plasmon Resonance/instrumentation , Aptamers, Nucleotide/genetics , Blood Chemical Analysis/instrumentation , Equipment Design , Equipment Failure Analysis , Gold/chemistry , Metal Nanoparticles/ultrastructure , Microchemistry/instrumentation , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...