Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Patterns (N Y) ; 1(3): 100040, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-33205108

ABSTRACT

Image analysis is key to extracting quantitative information from scientific microscopy images, but the methods involved are now often so refined that they can no longer be unambiguously described by written protocols. We introduce BIAFLOWS, an open-source web tool enabling to reproducibly deploy and benchmark bioimage analysis workflows coming from any software ecosystem. A curated instance of BIAFLOWS populated with 34 image analysis workflows and 15 microscopy image datasets recapitulating common bioimage analysis problems is available online. The workflows can be launched and assessed remotely by comparing their performance visually and according to standard benchmark metrics. We illustrated these features by comparing seven nuclei segmentation workflows, including deep-learning methods. BIAFLOWS enables to benchmark and share bioimage analysis workflows, hence safeguarding research results and promoting high-quality standards in image analysis. The platform is thoroughly documented and ready to gather annotated microscopy datasets and workflows contributed by the bioimaging community.

2.
Sci Rep ; 8(1): 538, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323201

ABSTRACT

The detection of anatomical landmarks in bioimages is a necessary but tedious step for geometric morphometrics studies in many research domains. We propose variants of a multi-resolution tree-based approach to speed-up the detection of landmarks in bioimages. We extensively evaluate our method variants on three different datasets (cephalometric, zebrafish, and drosophila images). We identify the key method parameters (notably the multi-resolution) and report results with respect to human ground truths and existing methods. Our method achieves recognition performances competitive with current existing approaches while being generic and fast. The algorithms are integrated in the open-source Cytomine software and we provide parameter configuration guidelines so that they can be easily exploited by end-users. Finally, datasets are readily available through a Cytomine server to foster future research.


Subject(s)
Body Weights and Measures/methods , Image Processing, Computer-Assisted/methods , Algorithms , Animals , Body Weights and Measures/standards , Drosophila , Humans , Software , Zebrafish
3.
Bioinformatics ; 32(9): 1395-401, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26755625

ABSTRACT

MOTIVATION: Collaborative analysis of massive imaging datasets is essential to enable scientific discoveries. RESULTS: We developed Cytomine to foster active and distributed collaboration of multidisciplinary teams for large-scale image-based studies. It uses web development methodologies and machine learning in order to readily organize, explore, share and analyze (semantically and quantitatively) multi-gigapixel imaging data over the internet. We illustrate how it has been used in several biomedical applications. AVAILABILITY AND IMPLEMENTATION: Cytomine (http://www.cytomine.be/) is freely available under an open-source license from http://github.com/cytomine/ A documentation wiki (http://doc.cytomine.be) and a demo server (http://demo.cytomine.be) are also available. CONTACT: info@cytomine.be SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Image Interpretation, Computer-Assisted , Statistics as Topic , Internet , Software
4.
IEEE Trans Med Imaging ; 34(9): 1890-900, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25794388

ABSTRACT

Cephalometric analysis is an essential clinical and research tool in orthodontics for the orthodontic analysis and treatment planning. This paper presents the evaluation of the methods submitted to the Automatic Cephalometric X-Ray Landmark Detection Challenge, held at the IEEE International Symposium on Biomedical Imaging 2014 with an on-site competition. The challenge was set to explore and compare automatic landmark detection methods in application to cephalometric X-ray images. Methods were evaluated on a common database including cephalograms of 300 patients aged six to 60 years, collected from the Dental Department, Tri-Service General Hospital, Taiwan, and manually marked anatomical landmarks as the ground truth data, generated by two experienced medical doctors. Quantitative evaluation was performed to compare the results of a representative selection of current methods submitted to the challenge. Experimental results show that three methods are able to achieve detection rates greater than 80% using the 4 mm precision range, but only one method achieves a detection rate greater than 70% using the 2 mm precision range, which is the acceptable precision range in clinical practice. The study provides insights into the performance of different landmark detection approaches under real-world conditions and highlights achievements and limitations of current image analysis techniques.


Subject(s)
Anatomic Landmarks/diagnostic imaging , Cephalometry/methods , Head/diagnostic imaging , Image Processing, Computer-Assisted/methods , Adolescent , Adult , Child , Head/anatomy & histology , Humans , Middle Aged , Radiography, Dental , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...