Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2767: 293-305, 2024.
Article in English | MEDLINE | ID: mdl-37418145

ABSTRACT

Single-cell genomics allow the characterization and quantification of molecular heterogeneity from a wide variety of tissues. Here, we describe the manual dissociation and collection of single cells, a method adapted for the characterization of precious small tissues like preimplantation embryos. We also describe the acquisition of mouse embryos by flushing of the oviducts. The cells can then be used in multiple sequencing protocols, for example, Smart-seq2, Smart-seq3, smallseq, and scBSseq.


Subject(s)
Blastocyst , Embryo, Mammalian , Mice , Animals , Genomics , Mammals
2.
Methods Mol Biol ; 2767: 189-212, 2024.
Article in English | MEDLINE | ID: mdl-37278916

ABSTRACT

The development of single-cell multiomics has provided the ability to systematically investigate cellular diversity and heterogeneity in different biological systems via comprehensive delineations of individual cellular states. Single-cell RNA sequencing in particular has served as a powerful tool to the study of the molecular circuitries underlying preimplantation embryonic development in both the mouse and human. Here we describe a method to elucidate the cellular dynamics of the embryo further by performing both single-cell RNA sequencing (Smart-Seq2) and single-cell small non-coding RNA sequencing (Small-Seq) on the same individual embryonic cell.


Subject(s)
RNA, Small Untranslated , Humans , Pregnancy , Female , Mice , Animals , Blastocyst , Embryo, Mammalian , Embryonic Development/genetics , RNA, Messenger
3.
Methods Mol Biol ; 2767: 307-320, 2024.
Article in English | MEDLINE | ID: mdl-37261674

ABSTRACT

Fluorescence in situ hybridization (FISH) provides a valuable tool for studying the spatial localization of and expression level of genes and cell function in diverse biological contexts. In this chapter, we describe a protocol for the simultaneous detection of RNA (including single-molecule (sm)RNA) and DNA in mammalian embryos using FISH. RNA FISH is a technique that enables the detection and visualization of specific RNA molecules within cells. With advancements in technology, the sensitivity and specificity of RNA FISH has been improved to allow the detection of individual mRNA molecules. Both RNA and smRNA are detected using a set of fluorescent-labeled probes, which are complementary to a specific nucleotide sequence corresponding to the gene of interest. These probes hybridize to the target RNA molecules, enabling the simultaneous detection of multiple RNAs within the same cell or tissue. DNA FISH is performed using probes directed at the DNA sequence to detect the genome region of interest. In this chapter, we provide a protocol to process mammalian embryos for FISH with probe examples specifically for studying X-Chromosome activity. By utilizing other probe designs, this protocol can be adapted for the visualization and quantification of other genes and chromosomal regions of interest.


Subject(s)
Embryo, Mammalian , RNA , Animals , RNA/genetics , In Situ Hybridization, Fluorescence/methods , RNA, Messenger/genetics , DNA/genetics , Mammals/genetics
4.
Reproduction ; 165(4): R103-R116, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36700623

ABSTRACT

In brief: Human embryogenesis still remains largely unexplored. This review helps identify some of our current gaps in knowledge pertaining to preimplantation development, which may have implications for understanding fundamental aspects of human development, assisted reproductive technologies, and stem cell biology. Abstract: Preimplantation development is arguably one of the most critical stages of embryogenesis. Beginning with the formation of the totipotent zygote post-fertilization, a series of cell divisions, and a complex coordination of physical cues, molecular signals and changes in gene expression lead to the formation of the blastocyst, a structure capable of implanting into the uterine wall. The blastocyst is composed of more specified cellular lineages, which will give rise to every tissue of the developing organism as well as the extra-embryonic lineages which support fetal growth. While the mouse has been used as a model to understand the events of preimplantation development for decades, in recent years, an expanding body of work has been conducted using the human embryo. These studies have identified some crucial species differences, particularly in the transcriptional and spatio-temporal expression of lineage markers and responses to cell signaling perturbations. This review compares recent findings on preimplantation development in mouse and human, with a focus on the specification of the first cellular lineages. Highlighting differences and noting mechanisms that require further examination in the human embryo is of critical importance for both the accurate translation of results from the mouse model and our overall understanding of mammalian development. We further highlight the latest advancement in reproductive research, the development of the 3D stem cell-based models known as 'blastoids'. The knowledge discussed in this review has major clinical implications for assisted reproductive technologies such as in vitro fertilization and for applications in stem cell biology.


Subject(s)
Embryonic Development , Zygote , Animals , Humans , Embryonic Development/genetics , Cell Lineage , Zygote/metabolism , Embryo, Mammalian , Blastocyst , Gene Expression Regulation, Developmental , Mammals/genetics
5.
Genome Res ; 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35948369

ABSTRACT

The preconceptual, intrauterine, and early life environments can have a profound and long-lasting impact on the developmental trajectories and health outcomes of the offspring. Given the relatively low success rates of assisted reproductive technologies (ART; ∼25%), additives and adjuvants, such as glucocorticoids, are used to improve the success rate. Considering the dynamic developmental events that occur during this window, these exposures may alter blastocyst formation at a molecular level, and as such, affect not only the viability of the embryo and the ability of the blastocyst to implant, but also the developmental trajectory of the first three cell lineages, ultimately influencing the physiology of the embryo. In this study, we present a comprehensive single-cell transcriptome, methylome, and small RNA atlas in the day 7 human embryo. We show that, despite no change in morphology and developmental features, preimplantation glucocorticoid exposure reprograms the molecular profile of the TE lineage, and these changes are associated with an altered metabolic and inflammatory response. Our data also suggest that glucocorticoids can precociously mature the TE sublineages, supported by the presence of extravillous trophoblast markers in the polar sublineage and presence of X Chromosome dosage compensation. Further, we have elucidated that epigenetic regulation-DNA methylation and microRNAs (miRNAs)-likely underlies the transcriptional changes observed. This study suggests that exposures to exogenous compounds during preimplantation may unintentionally reprogram the human embryo, possibly leading to suboptimal development and longer-term health outcomes.

6.
Mol Biol Rep ; 47(8): 6393-6397, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32588189

ABSTRACT

The number of microsatellite markers currently available for the eastern chipmunk Tamias striatus provides limited capacity to achieve sufficient pedigree building for the study of their genetic structure and relatedness patterns. We developed microsatellite loci for the eastern chipmunk, a small rodent commonly found in eastern North America. More specifically, we report data for 14 loci and 50 individuals genotyped from a population in southern Québec, Canada. We found a number of alleles ranging from 5 to 21 and there was no linkage disequilibrium among locus. One locus deviated from Hardy-Weinberg equilibrium and had a high proportion of null alleles. Those loci will be used in addition to previously developed loci to improve the precision of parentage assignment and population genetics studies on this species.


Subject(s)
Microsatellite Repeats , Sciuridae/genetics , Animals , Genetic Loci , Genetics, Population , Linkage Disequilibrium , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...