Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38562801

ABSTRACT

Objective: To identify imaging subtypes of the cortico-basal syndrome (CBS) based solely on a data-driven assessment of MRI atrophy patterns, and investigate whether these subtypes provide information on the underlying pathology. Methods: We applied Subtype and Stage Inference (SuStaIn), a machine learning algorithm that identifies groups of individuals with distinct biomarker progression patterns, to a large cohort of 135 CBS cases (52 had a pathological or biomarker defined diagnosis) and 252 controls. The model was fit using volumetric features extracted from baseline T1-weighted MRI scans and validated using follow-up MRI. We compared the clinical phenotypes of each subtype and investigated whether there were differences in associated pathology between the subtypes. Results: SuStaIn identified two subtypes with distinct sequences of atrophy progression; four-repeat-tauopathy confirmed cases were most commonly assigned to the Subcortical subtype (83% of CBS-PSP and 75% of CBS-CBD), while CBS-AD was most commonly assigned to the Fronto-parieto-occipital subtype (81% of CBS-AD). Subtype assignment was stable at follow-up (98% of cases), and individuals consistently progressed to higher stages (100% stayed at the same stage or progressed), supporting the model's ability to stage progression. Interpretation: By jointly modelling disease stage and subtype, we provide data-driven evidence for at least two distinct and longitudinally stable spatiotemporal subtypes of atrophy in CBS that are associated with different underlying pathologies. In the absence of sensitive and specific biomarkers, accurately subtyping and staging individuals with CBS at baseline has important implications for screening on entry into clinical trials, as well as for tracking disease progression.

2.
Brain Commun ; 4(3): fcac098, 2022.
Article in English | MEDLINE | ID: mdl-35602649

ABSTRACT

The most common clinical phenotype of progressive supranuclear palsy is Richardson syndrome, characterized by levodopa unresponsive symmetric parkinsonism, with a vertical supranuclear gaze palsy, early falls and cognitive impairment. There is currently no detailed understanding of the full sequence of disease pathophysiology in progressive supranuclear palsy. Determining the sequence of brain atrophy in progressive supranuclear palsy could provide important insights into the mechanisms of disease progression, as well as guide patient stratification and monitoring for clinical trials. We used a probabilistic event-based model applied to cross-sectional structural MRI scans in a large international cohort, to determine the sequence of brain atrophy in clinically diagnosed progressive supranuclear palsy Richardson syndrome. A total of 341 people with Richardson syndrome (of whom 255 had 12-month follow-up imaging) and 260 controls were included in the study. We used a combination of 12-month follow-up MRI scans, and a validated clinical rating score (progressive supranuclear palsy rating scale) to demonstrate the longitudinal consistency and utility of the event-based model's staging system. The event-based model estimated that the earliest atrophy occurs in the brainstem and subcortical regions followed by progression caudally into the superior cerebellar peduncle and deep cerebellar nuclei, and rostrally to the cortex. The sequence of cortical atrophy progresses in an anterior to posterior direction, beginning in the insula and then the frontal lobe before spreading to the temporal, parietal and finally the occipital lobe. This in vivo ordering accords with the post-mortem neuropathological staging of progressive supranuclear palsy and was robust under cross-validation. Using longitudinal information from 12-month follow-up scans, we demonstrate that subjects consistently move to later stages over this time interval, supporting the validity of the model. In addition, both clinical severity (progressive supranuclear palsy rating scale) and disease duration were significantly correlated with the predicted subject event-based model stage (P < 0.01). Our results provide new insights into the sequence of atrophy progression in progressive supranuclear palsy and offer potential utility to stratify people with this disease on entry into clinical trials based on disease stage, as well as track disease progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...