Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 21880, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26935790

ABSTRACT

Sodefrin, a decapeptide isolated from the male dorsal gland of the Japanese fire belly newt Cynops pyrrhogaster, was the first peptide pheromone identified from a vertebrate. The fire belly salamander and sodefrin have become a model for sex pheromone investigation in aquatically courting salamanders ever since. Subsequent studies in other salamanders identified SPF protein courtship pheromones of around 20 kDa belonging to the same gene-family. Although transcripts of these proteins could be PCR-amplified in Cynops, it is currently unknown whether they effectively use full-length SPF pheromones next to sodefrin. Here we combined transcriptomics, proteomics and phylogenetics to investigate SPF pheromone use in Cynops pyrrhogaster. Our data show that not sodefrin transcripts, but multiple SPF transcripts make up the majority of the expression profile in the dorsal gland of this newt. Proteome analyses of water in which a male has been courting confirm that this protein blend is effectively secreted and tail-fanned to the female. By combining phylogenetics and expression data, we show that independent evolutionary lineages of these SPF's were already expressed in ancestral Cynops species before the origin of sodefrin. Extant Cynops species continue to use this multi-component pheromone system, consisting of various proteins in addition to a lineage-specific peptide.


Subject(s)
Oligopeptides/metabolism , Pheromones/metabolism , Salamandridae/metabolism , Animals , Female , Male , Species Specificity
2.
BMC Evol Biol ; 15: 54, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25888438

ABSTRACT

BACKGROUND: Male salamanders (Urodela) often make use of pheromones that are produced in sexually dimorphic glands to persuade the female into courtship and mating. The mental gland of lungless salamanders (Plethodontidae) and dorsal cloacal glands (or abdominal glands) of newts (Salamandridae) have been particularly well studied in that respect. In both families, sodefrin precursor-like factor (SPF) proteins have been identified as major components of the courtship pheromone system. However, similar to plethodontids, some newts also make use of subtle head glands during courtship, but few pheromones have been characterized from such structures. Males of red-spotted newts (Notophthalmus viridescens, Salamandridae) have both cloacal and cheek (genial) glands, and are known to apply secretions to the female's nose by both tail-fanning and cheek-rubbing. Here we combined transcriptomic and phylogenetic analyses to investigate the presence, diversity and evolution of SPF proteins in the cloacal and cheek glands of this species. RESULTS: Our analyses indicate that the cheek glands of male N. viridescens produce a similar amount and diversity of SPF isoforms as the cloacal glands in this species. Expression in other tissues was much lower, suggesting that both male-specific courtship glands secrete SPF pheromones during courtship. Our phylogenetic analyses show that N. viridescens expresses a combination of isoforms that stem from four highly diverged evolutionary lineages of SPF variants, that together form a basis for the broad diversity of SPF precursors in the breeding glands. CONCLUSIONS: The similar SPF expression of cheek and cloacal glands suggests that this protein family is used for pheromone signalling through cheek rubbing in the red-spotted newt. Since several male salamandrids in other genera have comparable head glands, SPF application via other glands than the cloacal glands may be more widespread than currently appreciated in salamandrids.


Subject(s)
Notophthalmus viridescens/physiology , Animals , Courtship , Exocrine Glands/chemistry , Female , Male , Oligopeptides/chemistry , Oligopeptides/genetics , Oligopeptides/metabolism , Pheromones/chemistry , Pheromones/genetics , Pheromones/metabolism , Phylogeny , Proteins/genetics
3.
Proc Biol Sci ; 282(1803): 20142960, 2015 Mar 22.
Article in English | MEDLINE | ID: mdl-25694622

ABSTRACT

Males of the advanced salamanders (Salamandroidea) attain internal fertilization without a copulatory organ by depositing a spermatophore on the substrate in the environment, which females subsequently take up with their cloaca. The aquatically reproducing modern Eurasian newts (Salamandridae) have taken this to extremes, because most species do not display close physical contact during courtship, but instead largely rely on females following the male track at spermatophore deposition. Although pheromones have been widely assumed to represent an important aspect of male courtship, molecules able to induce the female following behaviour that is the prelude for successful insemination have not yet been identified. Here, we show that uncleaved sodefrin precursor-like factor (SPF) protein pheromones are sufficient to elicit such behaviour in female palmate newts (Lissotriton helveticus). Combined transcriptomic and proteomic evidence shows that males simultaneously tail-fan multiple ca 20 kDa glycosylated SPF proteins during courtship. Notably, molecular dating estimates show that the diversification of these proteins already started in the late Palaeozoic, about 300 million years ago. Our study thus not only extends the use of uncleaved SPF proteins outside terrestrially reproducing plethodontid salamanders, but also reveals one of the oldest vertebrate pheromone systems.


Subject(s)
Amphibian Proteins/metabolism , Sex Attractants/metabolism , Urodela/physiology , Amino Acid Sequence , Amphibian Proteins/genetics , Animals , Base Sequence , Courtship , Female , Male , Molecular Sequence Data , Phylogeny , Proteome , Sex Attractants/genetics , Sexual Behavior, Animal , Species Specificity , Transcriptome , Urodela/genetics
4.
Mol Biol Evol ; 32(2): 472-80, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25415963

ABSTRACT

Sex pheromones form an important facet of reproductive strategies in many organisms throughout the Animal Kingdom. One of the oldest known sex pheromones in vertebrates are proteins of the Sodefrin Precursor-like Factor (SPF) system, which already had a courtship function in early salamanders. The subsequent evolution of salamanders is characterized by a diversification in courtship and reproduction, but little is known on how the SPF pheromone system diversified in relation to changing courtship strategies. Here, we combined transcriptomic, genomic, and phylogenetic analyses to investigate the evolution of the SPF pheromone system in nine salamandrid species with distinct courtship displays. First, we show that SPF originated from vertebrate three-finger proteins and diversified through multiple gene duplications in salamanders, while remaining a single copy in frogs. Next, we demonstrate that tail-fanning newts have retained a high phylogenetic diversity of SPFs, whereas loss of tail-fanning has been associated with a reduced importance or loss of SPF expression in the cloacal region. Finally, we show that the attractant decapeptide sodefrin is cleaved from larger SPF precursors that originated by a 62 bp insertion and consequent frameshift in an ancestral Cynops lineage. This led to the birth of a new decapeptide that rapidly evolved a pheromone function independently from uncleaved proteins.


Subject(s)
Sex Attractants/genetics , Urodela/genetics , Urodela/metabolism , Animals , Evolution, Molecular , Sex Attractants/classification
5.
J Exp Biol ; 216(Pt 22): 4139-43, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23948475

ABSTRACT

Males of many frog species develop spiny nuptial pads with underlying glands on their thumbs during the mating period. We used 3D visualization on the European common frog Rana temporaria to show that the morphology of these glands allows the channelling of secreted molecules to the pad's surface during amplexus. Combined transcriptome and proteome analyses show that proteins of the Ly-6/uPAR family, here termed amplexins, are highly expressed in the nuptial glands during the mating season, but are totally absent outside that period. The function of amplexins remains unknown, but it is interesting to note that they share structural similarities with plethodontid modulating factors, proteins that influence courtship duration in salamanders.


Subject(s)
Animal Communication , Anura/physiology , Forelimb/metabolism , Sex Attractants/metabolism , Sex Characteristics , Animals , Anura/metabolism , Chromatography, High Pressure Liquid , Gene Library , Histological Techniques , Mass Spectrometry , Polymerase Chain Reaction , Sex Attractants/genetics , Species Specificity , Urodela/metabolism , X-Ray Microtomography
6.
Biol Lett ; 9(3): 20130051, 2013 Jun 23.
Article in English | MEDLINE | ID: mdl-23485876

ABSTRACT

Amphibians have invaded arboreal habitats multiple times independently during their evolution. Adaptation to these habitats was nearly always accompanied by the presence or appearance of toe pads, flattened enlargements on tips of fingers and toes that provide adhesive power in these environments. The strength and elasticity of the toe pad relies on polygonal arrayed cells ending in nanoscale projections, which are densely packed with cytoskeletal proteins. Here, we characterized and determined the evolutionary origin of these proteins in the toe pad of the tree frog Hyla cinerea. We created a subtracted cDNA library enriching genes that are expressed in the toe pad, but nowhere else in the toe. Our analyses revealed five alpha keratins as main structural proteins of the amphibian toe pad. Phylogenetic analyses show that these proteins belong to different keratin lineages that originated in an early tetrapod ancestor and in mammals evolved to become the major keratin types of hair. The ancestral keratins were probably already expressed in areas that required skin reinforcement in early tetrapods, and subsequently diverged to support fundamentally different adaptive structures in amphibians and mammals.


Subject(s)
Amphibians/physiology , Foot/physiology , Hair/physiology , Keratins/metabolism , Mammals/physiology , Animals , Hair/metabolism , Recurrence
7.
Mol Biol Evol ; 29(3): 995-1004, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22046002

ABSTRACT

The conquest of land was arguably one of the most fundamental ecological transitions in vertebrates and entailed significant changes in skin structure and appendages to cope with the new environment. In extant tetrapods, the rigidity of the integument is largely created by type I and type II keratins, which are structural proteins essential in forming a strong cytoplasmic network. It is expected that such proteins have undergone fundamental changes in both stem and crown tetrapods. Here, we integrate genomic, phylogenetic, and expression data in a comprehensive study on the early evolution and functional diversification of tetrapod keratins. Our analyses reveal that all type I and type II tetrapod keratins evolved from only two genes that were present in the ancestor of extant vertebrates. Subsequently, the water-to-land transition in the stem lineage of tetrapods was associated with a major radiation and functional diversification of keratin genes. These duplications acquired functions that serve rigidity in integumental hard structures and were the prime for subsequent independent keratin diversification in tetrapod lineages.


Subject(s)
Adaptation, Biological/genetics , Evolution, Molecular , Keratins/genetics , Keratins/metabolism , Phylogeny , Vertebrates/genetics , Animals , Bayes Theorem , Computational Biology , Expressed Sequence Tags , Gene Duplication/genetics , Models, Genetic , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...