Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Med Biol ; 58(18): 6241-62, 2013 Sep 21.
Article in English | MEDLINE | ID: mdl-23965800

ABSTRACT

A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which proves the need for adequate compensation strategies.


Subject(s)
Gels/chemistry , Magnetic Resonance Imaging/methods , Polymers/chemistry , Radiometry/methods , Tomography, X-Ray Computed/methods , Brain Neoplasms/radiotherapy , Calibration , Equipment Design , Humans , Micelles , Phantoms, Imaging , Radiometry/instrumentation , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated/methods , Reproducibility of Results
2.
Phys Med Biol ; 58(1): 19-42, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23221300

ABSTRACT

The intra- and inter-batch accuracy and precision of MRI (polyacrylamide gelatin gel fabricated at atmospheric conditions) polymer gel dosimeters are assessed in full 3D. In the intra-batch study, eight spherical flasks were filled with the same polymer gel along with a set of test tubes that served as calibration phantoms. In the inter-batch study, the eight spherical flasks were filled with different batches of gel. For each spherical phantom, a separate set of calibration phantoms was used. The spherical phantoms were irradiated using a three-field coplanar beam configuration in a very reproducible manner. The calibration phantoms were irradiated to known doses to obtain a dose-R2 calibration plot which was applied on the corresponding R2 maps of all spherical phantoms on an individual basis. The intra-batch study showed high dosimetric precision (3.1%) notwithstanding poor accuracy (mean dose discrepancies up to 13.0%). In the inter-batch study, a similar dosimetric precision (4.3%) and accuracy (mean dose discrepancies up to 13.7%) were found. The poor dosimetric accuracy was attributed to a systematic fault that was related to the calibration method. Therefore, the dose maps were renormalized using an independent ion chamber dose measurement. It is illustrated that with this renormalization, excellent agreement between the gel measured and TPS calculated 3D dose maps is achievable: 97% and 99% of the pixels meet the 3%/3 mm criteria for the intra- and inter-batch experiments, respectively. However renormalization will result in significant dose deviations inside a realistically sized anthropomorphic phantom as will be shown in a concurrent paper.


Subject(s)
Polymers/chemistry , Radiometry/methods , Gels , Magnetic Resonance Imaging , Radiometry/instrumentation , Reproducibility of Results , Research Design
3.
Phys Med Biol ; 58(1): 43-61, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23221322

ABSTRACT

This study quantifies some major physico-chemical factors that influence the validity of MRI (PAGAT) polymer gel dosimetry: temperature history (pre-, during and post-irradiation), oxygen exposure (post-irradiation) and volumetric effects (experiment with phantom in which a small test tube is inserted). Present results confirm the effects of thermal history prior to irradiation. By exposing a polymer gel sample to a linear temperature gradient of ∼2.8 °C cm⁻¹ and following the dose deviation as a function of post-irradiation time new insights into temporal variations were added. A clear influence of the temperature treatment on the measured dose distribution is seen during the first hours post-irradiation (resulting in dose deviations up to 12%). This effect diminishes to 5% after 54 h post-irradiation. Imposing a temperature offset (maximum 6 °C for 3 h) during and following irradiation on a series of calibration phantoms results in only a small dose deviation of maximum 4%. Surprisingly, oxygen diffusing in a gel dosimeter up to 48 h post-irradiation was shown to have no effect. Volumetric effects were studied by comparing the dose distribution in a homogeneous phantom compared to the dose distribution in a phantom in which a small test tube was inserted. This study showed that the dose measured inside the test tube was closer to the ion chamber measurement in comparison to the reference phantom without test tube by almost 7%. It is demonstrated that physico-chemical effects are not the major causes for the dose discrepancies encountered in the reproducibility study discussed in the concurrent paper (Vandecasteele and De Deene 2013a Phys. Med. Biol. 58 19-42). However, it is concluded that these physico-chemical effects are important factors that should be addressed to further improve the dosimetric accuracy of 3D MRI polymer gel dosimetry.


Subject(s)
Chemical Phenomena , Polymers/chemistry , Radiometry/methods , Drug Stability , Gels , Magnetic Resonance Imaging , Oxygen/chemistry , Radiation Dosage , Reproducibility of Results , Temperature
4.
Phys Med Biol ; 58(1): 63-85, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23221352

ABSTRACT

In MRI (PAGAT) polymer gel dosimetry, there exists some controversy on the validity of 3D dose verifications of clinical treatments. The relative contribution of important sources of uncertainty in MR scanning to the overall accuracy and precision of 3D MRI polymer gel dosimetry is quantified in this study. The performance in terms of signal-to-noise and imaging artefacts was evaluated on three different MR scanners (two 1.5 T and a 3 T scanner). These include: (1) B0-field inhomogeneity, (2) B1-field inhomogeneity, (3) dielectric effects (losses and standing waves) and (4) temperature inhomogeneity during scanning. B0-field inhomogeneities that amount to maximum 5 ppm result in dose deviations of up to 4.3% and deformations of up to 5 pixels. Compensation methods are proposed. B1-field inhomogeneities were found to induce R2 variations in large anthropomorphic phantoms both at 1.5 and 3 T. At 1.5 T these effects are mainly caused by the coil geometry resulting in dose deviations of up to 25%. After the correction of the R2 maps using a heuristic flip angle-R2 relation, these dose deviations are reduced to 2.4%. At 3 T, the dielectric properties of the gel phantoms are shown to strongly influence B1-field homogeneity, hence R2 homogeneity, especially of large anthropomorphic phantoms. The low electrical conductivity of polymer gel dosimeters induces standing wave patterns resulting in dose deviations up to 50%. Increasing the conductivity of the gel by adding NaCl reduces the dose deviation to 25% after which the post-processing is successful in reducing the remaining inhomogeneities caused by the coil geometry to within 2.4%. The measurements are supported by computational modelling of the B1-field. Finally, temperature fluctuations of 1 °C frequently encountered in clinical MRI scanners result in dose deviations up to 15%. It is illustrated that with adequate temperature stabilization, the dose uncertainty is reduced to within 2.58%.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Polymers/chemistry , Radiometry/methods , Gels , Phantoms, Imaging , Polymerization , Radiometry/instrumentation , Reproducibility of Results , Temperature
5.
MAGMA ; 23(4): 217-26, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20577778

ABSTRACT

OBJECTIVE: This study presents a reproducible phantom which mimics oxygen-consuming tissue and can be used for the validation of (19)F MRI oximetry. MATERIALS AND METHODS: The phantom consists of a haemodialysis filter of which the outer compartment is filled with a gelatin matrix containing viable yeast cells. Perfluorocarbon emulsions can be added to the gelatin matrix to simulate sequestered perfluorocarbons. A blood-substituting perfluorocarbon fluid is pumped through the lumen of the fibres in the filter. (19)F relaxometry MRI is performed with a fast 2D Look-Locker imaging sequence on a clinical 3T scanner. RESULTS: Acute and perfusion-related hypoxia were simulated and imaged spatially and temporally using the phantom. CONCLUSIONS: The presented experimental setup can be used to simulate oxygen consumption by somatic cells in vivo and for validating computational biophysical models of hypoxia, as measured with (19)F MRI oximetry.


Subject(s)
Fluorine , Magnetic Resonance Imaging/methods , Oximetry/methods , Oxygen Consumption/physiology , Oxygen/metabolism , Phantoms, Imaging , Cell Hypoxia/physiology , Computer Simulation , Magnetic Resonance Imaging/instrumentation , Neoplasms/metabolism , Neoplasms/pathology , Oximetry/instrumentation , Time Factors , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL