Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 28(10): 1805-1821.e8, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34033742

ABSTRACT

Neural stem cells residing in the hippocampal neurogenic niche sustain lifelong neurogenesis in the adult brain. Adult hippocampal neurogenesis (AHN) is functionally linked to mnemonic and cognitive plasticity in humans and rodents. In Alzheimer's disease (AD), the process of generating new neurons at the hippocampal neurogenic niche is impeded, yet the mechanisms involved are unknown. Here we identify miR-132, one of the most consistently downregulated microRNAs in AD, as a potent regulator of AHN, exerting cell-autonomous proneurogenic effects in adult neural stem cells and their progeny. Using distinct AD mouse models, cultured human primary and established neural stem cells, and human patient material, we demonstrate that AHN is directly affected by AD pathology. miR-132 replacement in adult mouse AD hippocampus restores AHN and relevant memory deficits. Our findings corroborate the significance of AHN in mouse models of AD and reveal the possible therapeutic potential of targeting miR-132 in neurodegeneration.


Subject(s)
Alzheimer Disease , MicroRNAs , Alzheimer Disease/genetics , Animals , Disease Models, Animal , Hippocampus , Humans , Memory Disorders/genetics , Memory Disorders/therapy , Mice , MicroRNAs/genetics , Neurogenesis
2.
Mol Neurodegener ; 13(1): 54, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30314521

ABSTRACT

BACKGROUND: Despite diverging levels of amyloid-ß (Aß) and TAU pathology, different mouse models, as well as sporadic AD patients show predictable patterns of episodic memory loss. MicroRNA (miRNA) deregulation is well established in AD brain but it is unclear whether Aß or TAU pathology drives those alterations and whether miRNA changes contribute to cognitive decline. METHODS: miRNAseq was performed on cognitively intact (4 months) and impaired (10 months) male APPtg (APPswe/PS1L166P) and TAUtg (THY-Tau22) mice and their wild-type littermates (APPwt and TAUwt). We analyzed the hippocampi of 12 mice per experimental group (n = 96 in total), and employed a 2-way linear model to extract differentially expressed miRNAs. Results were confirmed by qPCR in a separate cohort of 4 M and 10 M APPtg and APPwt mice (n = 7-9 per group) and in human sporadic AD and non-demented control brain. Fluorescent in situ hybridization identified their cellular expression. Functional annotation of predicted targets was performed using GO enrichment. Behavior of wild-type mice was assessed after intracerebroventricular infusion of miRNA mimics. RESULTS: Six miRNAs (miR-10a-5p, miR-142a-5p, miR-146a-5p, miR-155-5p, miR-211-5p, miR-455-5p) are commonly upregulated between APPtg and TAUtg mice, and four of these (miR-142a-5p, miR-146a-5p, miR-155-5p and miR-455-5p) are altered in AD patients. All 6 miRNAs are strongly enriched in neurons. Upregulating these miRNAs in wild-type mice is however not causing AD-related cognitive disturbances. CONCLUSION: Diverging AD-related neuropathologies induce common disturbances in the expression of neuronal miRNAs. 4 of these miRNAs are also upregulated in AD patients. Therefore these 4 miRNAs (miR-142a-5p, miR-146a-5p, miR-155-5p and miR-455-5p) appear part of a core pathological process in AD patients and APPtg and TAUtg mice. They are however not causing cognitive disturbances in wild-type mice. As some of these miRNA target AD relevant proteins, they may be, in contrast, part of a protective response in AD.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , MicroRNAs/genetics , tau Proteins/metabolism , Alzheimer Disease/genetics , Animals , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/pathology , Mice, Transgenic , Neurons/metabolism , Real-Time Polymerase Chain Reaction/methods , Up-Regulation
3.
Neuron ; 93(5): 1066-1081.e8, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28238547

ABSTRACT

Human pluripotent stem cells (PSCs) provide a unique entry to study species-specific aspects of human disorders such as Alzheimer's disease (AD). However, in vitro culture of neurons deprives them of their natural environment. Here we transplanted human PSC-derived cortical neuronal precursors into the brain of a murine AD model. Human neurons differentiate and integrate into the brain, express 3R/4R Tau splice forms, show abnormal phosphorylation and conformational Tau changes, and undergo neurodegeneration. Remarkably, cell death was dissociated from tangle formation in this natural 3D model of AD. Using genome-wide expression analysis, we observed upregulation of genes involved in myelination and downregulation of genes related to memory and cognition, synaptic transmission, and neuron projection. This novel chimeric model for AD displays human-specific pathological features and allows the analysis of different genetic backgrounds and mutations during the course of the disease.


Subject(s)
Alzheimer Disease/pathology , Brain , Cell Differentiation/physiology , Neurites/metabolism , Neurons/metabolism , Pluripotent Stem Cells/cytology , tau Proteins/metabolism , Alzheimer Disease/diagnosis , Animals , Brain/metabolism , Brain/pathology , Cell Death/physiology , Humans , Mice , Phosphorylation
4.
EMBO Mol Med ; 8(9): 1005-18, 2016 09.
Article in English | MEDLINE | ID: mdl-27485122

ABSTRACT

microRNA-132 (miR-132) is involved in prosurvival, anti-inflammatory and memory-promoting functions in the nervous system and has been found consistently downregulated in Alzheimer's disease (AD). Whether and how miR-132 deficiency impacts AD pathology remains, however, unaddressed. We show here that miR-132 loss exacerbates both amyloid and TAU pathology via inositol 1,4,5-trisphosphate 3-kinase B (ITPKB) upregulation in an AD mouse model. This leads to increased ERK1/2 and BACE1 activity and elevated TAU phosphorylation. We confirm downregulation of miR-132 and upregulation of ITPKB in three distinct human AD patient cohorts, indicating the pathological relevance of this pathway in AD.


Subject(s)
Alzheimer Disease/pathology , Amyloid/metabolism , Brain/pathology , MicroRNAs/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , tau Proteins/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Disease Models, Animal , Humans , MAP Kinase Signaling System , Mice , Phosphorylation , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL
...