Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 10: 1255, 2019.
Article in English | MEDLINE | ID: mdl-31681367

ABSTRACT

The sesquiterpenoid rotundone is the compound responsible for the "black pepper" aroma of many plant species, including several economically important wine grape varieties. Since its identification in wine in 2008, there has been an increased interest in understanding how individual climatic or cultural factors affect the accumulation of rotundone in grapes and subsequently the level of wine "pepperiness." However, no study has assessed climatic and viticultural factors together to identify which variables have the strongest influence on rotundone accumulation. Our study aimed to fill this knowledge gap by developing a predictive model that identified factors that explain rotundone concentrations in Noiret (Vitis sp.) grapes at harvest. Over the 2016 and 2017 seasons, we measured 21 viticultural, meso- and microclimatic variables and concentrations of rotundone in Noiret wine grapes at seven vineyards in the northeastern U.S. Vineyard growing degree days (GDD v ) and the amount of solar radiation (cumulative solar exposure; CSEv) accumulated from the beginning of fruit ripening to harvest were the variables best correlated (r = 0.70 and r = 0.74, respectively) with rotundone concentrations. Linear correlations between microclimatic parameters and rotundone concentrations were weaker, but overall rotundone was negatively correlated with low (<15°C) and high (>30°C) berry temperatures. Using the 2-year data set we were able to develop a four-variable model which explained more than 80% of the variation in rotundone concentration at harvest. The model included weather [growing degree days during fruit ripening (GDD v )] and plant-related variables (concentrations of phosphorus and calcium in the leaf petiole, and crop load). The model we developed could be used by wine producers to identify sites or cultural practices that favor rotundone accumulation in Noiret grapes after performing a model validation with an additional, external data set. More broadly, the statistical approach used here could be applied to other studies that also seek to assess the effects of multiple factors on a variable of interest under varying environmental conditions.

2.
J Agric Food Chem ; 58(11): 6841-9, 2010 Jun 09.
Article in English | MEDLINE | ID: mdl-20450186

ABSTRACT

Sunlight exposure of winegrape clusters is frequently reported to increase C(13)-norisoprenoids in resulting wines, but the timing and mechanism of this influence is not well understood. Fruit zone leaf removal was applied to Vitis vinifera cv. Riesling at three timings: 2, 33 and 68 days past berry set (PBS), and compared to an untreated control. Free and total 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN), vitispirane and beta-damascenone were measured in juice and wines, and carotenoid profiles were determined in grapes at midseason and maturity. Significantly higher total TDN was observed in grapes from the 33-day PBS treatment compared to the control and other treatments (195 microg/L vs 54-87 microg/L). Total vitispirane in juice was also significantly increased in the 33-day PBS treatment, while total beta-damascenone was reduced in the 68-day PBS treatment compared to the control. Existing HPLC protocols were modified to allow for quantification of zeaxanthin in V. vinifera berries, and zeaxanthin was determined to be significantly higher in the 33-day PBS treatment than the control or other treatments (p < 0.05). Total TDN in juice correlated with free TDN in wine, with 11.0% +/- 2.5% of total juice TDN converted to free TDN in wine. In contrast, total vitispirane increased significantly during fermentation, and was not correlated with vitispirane in juice. In summary, leaf removal at 33 days PBS significantly increased zeaxanthin in Riesling grapes midseason, total TDN and vitispirane in the juice of mature Riesling grapes, and free and total TDN in finished wine, while earlier or later leaf removal had no effect.


Subject(s)
Carotenoids/analysis , Norisoprenoids/analysis , Plant Extracts/analysis , Vitis/growth & development , Vitis/radiation effects , Fruit/chemistry , Fruit/growth & development , Fruit/radiation effects , Light , Time Factors , Vitis/chemistry , Wine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...