Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Microbiol ; 8(11): 2183-2195, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37884815

ABSTRACT

Understanding the composition and function of the vaginal microbiome is crucial for reproductive and overall health. Here we established the Isala citizen-science project to analyse the vaginal microbiomes of 3,345 women in Belgium (18-98 years) through self-sampling, 16S amplicon sequencing and extensive questionnaires. The overall vaginal microbiome composition was strongly tied to age, childbirth and menstrual cycle phase. Lactobacillus species dominated 78% of the vaginal samples. Specific bacterial taxa also showed to co-occur in modules based on network correlation analysis. Notably, the module containing Lactobacillus crispatus, Lactobacillus jensenii and Limosilactobacillus taxa was positively linked to oestrogen levels and contraceptive use and negatively linked to childbirth and breastfeeding. Other modules, named after abundant taxa (Gardnerella, Prevotella and Bacteroides), correlated with multiple partners, menopause, menstrual hygiene and contraceptive use. With this resource-rich vaginal microbiome map and associated health, life-course, lifestyle and dietary factors, we provide unique data and insights for follow-up clinical and mechanistic research.


Subject(s)
Hygiene , Microbiota , Female , Humans , Menstruation , Vagina/microbiology , Contraceptive Agents
2.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Article in English | MEDLINE | ID: mdl-37823792

ABSTRACT

A novel strain of the genus Lactobacillus, named AMBV1719T, was isolated from the vagina of a healthy participant in our large-scale citizen science project on the female microbiome, named Isala. Phylogenetic analysis showed that the 16S rRNA gene of AMBV1719T is most similar to that of Lactobacillus taiwanensis with a sequence similarity of 99.873 %. However, a genome-wide comparison using average nucleotide identity (ANI) revealed that isolate AMBV1719T showed the highest ANI with Lactobacillus paragasseri JCM 5343T, with a value of only 88.17 %. This low ANI value with the most closely related strains known to date indicated that AMBV1719T represents a distinct species. This strain has a limited ability to degrade carbon sources compared to Lactobacillus gasseri, indicating its adaptation to the host. Its genome has a length of 2.12 Mb with a G+C content of 34.8 mol%. We thus propose the name Lactobacillus isalae sp. nov. for this novel species, with AMBV1719T (=LMG 32886T=CECT 30756T) as the type strain.


Subject(s)
Fatty Acids , Genes, Bacterial , Humans , Female , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , DNA, Bacterial/genetics , Bacterial Typing Techniques , Nucleic Acid Hybridization , Sequence Analysis, DNA , Fatty Acids/chemistry , Lactobacillus
3.
Int J Mol Sci ; 24(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36983020

ABSTRACT

It is generally accepted that microorganisms can colonize a non-pathological endometrium. However, in a clinical setting, endometrial samples are always collected by passing through the vaginal-cervical route. As such, the vaginal and cervical microbiomes can easily cross-contaminate endometrial samples, resulting in a biased representation of the endometrial microbiome. This makes it difficult to demonstrate that the endometrial microbiome is not merely a reflection of contamination originating from sampling. Therefore, we investigated to what extent the endometrial microbiome corresponds to that of the vagina, applying culturomics on paired vaginal and endometrial samples. Culturomics could give novel insights into the microbiome of the female genital tract, as it overcomes sequencing-related bias. Ten subfertile women undergoing diagnostic hysteroscopy and endometrial biopsy were included. An additional vaginal swab was taken from each participant right before hysteroscopy. Both endometrial biopsies and vaginal swabs were analyzed using our previously described WASPLab-assisted culturomics protocol. In total, 101 bacterial and two fungal species were identified among these 10 patients. Fifty-six species were found in endometrial biopsies and 90 were found in vaginal swabs. On average, 28 % of species were found in both the endometrial biopsy and vaginal swab of a given patient. Of the 56 species found in the endometrial biopsies, 13 were not found in the vaginal swabs. Of the 90 species found in vaginal swabs, 47 were not found in the endometrium. Our culturomics-based approach sheds a different light on the current understanding of the endometrial microbiome. The data suggest the potential existence of a unique endometrial microbiome that is not merely a presentation of cross-contamination derived from sampling. However, we cannot exclude cross-contamination completely. In addition, we observe that the microbiome of the vagina is richer in species than that of the endometrium, which contradicts the current sequence-based literature.


Subject(s)
Infertility , Microbiota , Female , Humans , Vagina/microbiology , Endometrium/microbiology , Cervix Uteri/microbiology , RNA, Ribosomal, 16S
SELECTION OF CITATIONS
SEARCH DETAIL
...