Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chemistry ; 29(63): e202302499, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37584901

ABSTRACT

Spacious M4 L6 tetrahedra can act as catalytic inhibitors for base-mediated reactions. Upon adding only 5 % of a self-assembled Fe4 L6 cage complex, the conversion of the conjugate addition between ethylcyanoacetate and ß-nitrostyrene catalyzed by proton sponge can be reduced from 83 % after 75 mins at ambient temperature to <1 % under identical conditions. The mechanism of the catalytic inhibition is unusual: the octacationic Fe4 L6 cage increases the acidity of exogenous water in the acetonitrile reaction solvent by favorably binding the conjugate acid of the basic catalyst. The inhibition only occurs for Fe4 L6 hosts with spacious internal cavities: minimal inhibition is seen with smaller tetrahedra or Fe2 L3 helicates. The surprising tendency of the cationic cage to preferentially bind protonated, cationic ammonium guests is quantified via the comprehensive modeling of spectrophotometric titration datasets.

2.
Anal Chim Acta ; 1227: 339834, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36089297

ABSTRACT

Equilibrium hard modeling of spectrophotometric titration data with binding parameters (ΔG° or logK values) involves nonlinear mathematical relationships and correlated experimental uncertainties. Therefore, uncertainty quantification techniques based on standard error computation substantially underestimate the true error for the calculated binding parameters. We show that the bootstrapping technique can provide accurate uncertainty quantification with no a priori knowledge of experimental error levels. Monte Carlo studies on simulated data show that bootstrapping the chemical solutions, whether on the data or residuals, handles absorbance error, transmittance error, and composition error well, producing asymmetric confidence intervals that correctly assess the true uncertainty. Additionally, stock solution error is handled well if it is present with other forms of error. Confidence interval bands for molar absorptivity curves can likewise be calculated. Analogous bootstrapping studies on real datasets confirm that the 95% confidence intervals match the variance observed from experimental replicates, though bootstrapping on the residuals should be used for smaller datasets. Bootstrapping along the titration axis should be used to estimate uncertainty whenever binding parameters are ascertained from titration datasets.


Subject(s)
Models, Statistical , Monte Carlo Method , Uncertainty
3.
J Org Chem ; 85(15): 10050-10061, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32790360

ABSTRACT

Herein, we present the synthesis and characterization of a macrocyclic polyamide cage that incorporates redox-active 1,4-dithiin units. UV/vis titration experiments with eight anions in acetonitrile revealed high affinity for H2AsO4- (log ß2 = 10.4-0.4+0.4) and HCO3- (log ß2 = 8.3-0.4+0.3) over other common anionic guests, such as Cl- (log K1:1 = 3.20-0.02+0.03), HSO4- (log K1:1 = 3.57-0.03+0.02), and H2PO4- (log K1:1 = 4.24-0.04+0.05), by the selective formation of HG2 complexes. The recognition of arsenate over phosphate is rare among both proteins and synthetic receptors, and though the origin of selectivity is not known, exploiting the difference in the binding stoichiometry represents an underexplored avenue toward developing receptors that can differentiate between the two anions. Additional analysis by 1H NMR in 1:3 CD2Cl2/MeCN-d3 found a strong dependence of anion binding stoichiometry with the solvent employed. Finally, titration experiments with cyclic voltammetry provided varying and complex responses for each anion tested, though reaction between the anion and receptors was observed in most cases. These results implicate 1,4-dithiins as interesting recognition moieties in the construction of supramolecular receptors.

4.
Chem Commun (Camb) ; 52(77): 11492-5, 2016 Oct 04.
Article in English | MEDLINE | ID: mdl-27532289

ABSTRACT

A homochiral, square-shaped, D2 symmetrical nanosized metal-linked macrocycle is able to form stable complexes with ferrocene in polar solvents, with detection achieved by means of multiple outputs (optical/chiroptical spectroscopies and cyclic voltammetry). Selective sensing using chiroptical spectroscopy in the presence of interfering analytes is demonstrated.

5.
Anal Chem ; 85(2): 1240-6, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23252465

ABSTRACT

Methylene blue (MB(+)), a common cationic thiazine dye, aggregates in acidic solutions. Absorbance data for equilibrated solutions of the chloride salt were analyzed over a concentration range of 1.0 × 10(-3) to 2.6 × 10(-5) M, in both 0.1 M HCl and 0.1 M HNO(3). Factor analyses of the raw absorbance data sets (categorically a better choice than effective absorbance) definitively show there are at least three distinct molecular absorbers regardless of acid type. A model with monomer, dimer, and trimer works well, but extensive testing has resulted in several other good models, some with higher order aggregates and some with chloride anions. Good models were frequently indistinguishable from each other by quality of fit or reasonability of molar absorptivity curves. The modeling of simulated data sets demonstrates the cases and degrees to which signal noise in the original data obscure the true model. In particular, the more mathematically similar (less orthogonal) the molar absorptivity curves of the chemical species in a model are, the less signal noise it takes to obscure the true model from other potentially good models. Unfortunately, the molar absorptivity curves in dye aggregation systems like that of methylene blue tend to be sufficiently similar so as to lead to the obscuration of models even at the noise levels (0.0001 ABS) of typical benchtop spectrophotometers.


Subject(s)
Acids/chemistry , Methylene Blue/analysis , Models, Molecular , Molecular Structure , Solutions
6.
Dalton Trans ; 40(45): 12132-45, 2011 Dec 07.
Article in English | MEDLINE | ID: mdl-21829833

ABSTRACT

The ligand L(bip), containing two bidentate pyrazolyl-pyridine termini separated by a 3,3'-biphenyl spacer, has been used to prepare tetrahedral cage complexes of the form [M(4)(L(bip))(6)]X(8), in which a bridging ligand spans each of the six edges of the M(4) tetrahedron. Several new examples have been structurally characterized with a variety of metal cation and different anions in order to examine interactions between the cationic cage and various anions. Small anions such as BF(4)(-) and NO(3)(-) can occupy the central cavity where they are anchored by an array of CH···F or CH···O hydrogen-bonding interactions with the interior surface of the cage, but larger anions such as naphthyl-1-sulfonate or tetraphenylborate lie outside the cavity and interact with the external surface of the cage via CH···π interactions or CH···O hydrogen bonds. The cages with M = Co and M = Cd have been examined in detail by NMR spectroscopy. For [Co(4)(L(bip))(6)](BF(4))(8) the (1)H NMR spectrum is paramagnetically shifted over the range -85 to +110 ppm, but the spectrum has been completely assigned by correlation of measured T(1) relaxation times of each peak with Co···H distances. (19)F DOSY measurements on the anions show that at low temperature a [BF(4)](-) anion diffuses at a similar rate to the cage superstructure surrounding it, indicating that it is trapped inside the central cage cavity. Furthermore, the equilibrium step-by-step self-assembly of the cage superstructure has been elucidated by detailed modeling of spectroscopic titrations at multiple temperatures of an acetonitrile solution of L(bip) into an acetonitrile solution of Co(BF(4))(2). Six species have been identified: [Co(2)L(bip)](4+), [Co(2)(L(bip))(2)](4+), [Co(4)(L(bip))(6)](8+), [Co(4)(L(bip))(8)](8+), [Co(2)(L(bip))(5)](4+), and [Co(L(bip))(3)](2+). Overall the assembly of the cage is entropy, and not enthalpy, driven. Once assembled, the cages show remarkable kinetic inertness due to their mechanically entangled nature: scrambling of metal cations between the sites of pure Co(4) and Cd(4) cages to give a statistical mixture of Co(4), Co(3)Cd, Co(2)Cd(2), CoCd(3) and Cd(4) cages takes months in solution at room temperature.

7.
Org Biomol Chem ; 8(14): 3272-80, 2010 Jul 21.
Article in English | MEDLINE | ID: mdl-20523939

ABSTRACT

A series of four chiral D(2) symmetrical macrocycles, in which two 3,3'-disubstituted Binol units are bridged by conjugated organic spacers of differing lengths and/or electronic properties, have been synthesized and characterized. The four different bridges consist of either ether or ester linkages in combination with either short biphenyl spacers or long diethynylphenyl spacers. NMR, CD spectroscopy, and molecular modeling help rationalize the shape of the cyclic scaffolds and even subtle modifications in the bridging units lead to drastic changes in conformation. The three macrocycles with longer bridging units and/or ester linkages form stable 1 : 1 complexes with C(60) in toluene. The one with a short spacer and ether linkage does not. The binding constants have been determined with a high degree of accuracy via equilibrium-restricted factor analysis; with long spacers and ester linkages log K(a) = 4.37(2); with short spacers and ester linkages log K(a) = 3.498(4); with long spacers and ether linkages log K(a) = 3.509(2).

8.
J Am Chem Soc ; 131(3): 1305-13, 2009 Jan 28.
Article in English | MEDLINE | ID: mdl-19125582

ABSTRACT

The reduction of a redox-active ligand is shown to drive reversible switching of a Cu(I) [2]pseudorotaxane ([2]PR(+)) into the reduced [3]pseudorotaxane ([3]PR(+)) by a bimolecular mechanism. The unreduced pseudorotaxanes [2]PR(+) and [3]PR(2+) are initially self-assembled from the binucleating ligand, 3,6-bis(5-methyl-2-pyridine)-1,2,4,5-tetrazine (Me(2)BPTZ), and a preformed copper-macrocycle moiety (Cu-M(+)) based on 1,10-phenanthroline. X-ray crystallography revealed a syn geometry of the [3]PR(2+). The UV-vis-NIR spectra show low-energy metal-to-ligand charge-transfer transitions that red shift from 808 nm for [2]PR(+) to 1088 nm for [3]PR(2+). Quantitative analysis of the UV-vis-NIR titration shows the stepwise formation constants to be K(1) = 8.9 x 10(8) M(-1) and K(2) = 3.1 x 10(6) M(-1), indicative of negative cooperativity. The cyclic voltammetry (CV) and coulometry of Me(2)BPTZ, [2]PR(+), and [3]PR(2+) shows the one-electron reductions at E(1/2) = -0.96, -0.65, and -0.285 V, respectively, to be stabilized in a stepwise manner by each Cu(+) ion. CVs of [2]PR(+) show changes with scan rate consistent with an EC mechanism of supramolecular disproportionation after reduction: [2]PR(0) + [2]PR(+) = [3]PR(+) + Me(2)BPTZ(0) (K(D)*, k(d)). UV-vis-NIR spectroelectrochemistry was used to confirm the 1:1 product stoichiometry for [3]PR(+):Me(2)BPTZ. The driving force (DeltaG(D)* = -5.1 kcal mol(-1)) for the reaction is based on the enhanced stability of the reduced [3]PR(+) over reduced [2]PR(0) by 365 mV (8.4 kcal mol(-1)). Digital simulations of the CVs are consistent with a bimolecular pathway (k(d) = 12 000 s(-1) M(-1)). Confirmation of the mechanism provides a basis to extend this new switching modality to molecular machines.


Subject(s)
Copper/chemistry , Rotaxanes/chemistry , Crystallography, X-Ray , Electrochemistry , Kinetics , Ligands , Models, Molecular , Molecular Structure , Oxidation-Reduction , Spectrophotometry, Infrared
9.
Biochimie ; 91(2): 271-6, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18983887

ABSTRACT

GLUT1, the most ubiquitously expressed member of the GLUT family of glucose transporters, can be acutely activated by a variety of cell stresses. Methylene blue activates glucose transport activity of GLUT1 in L929 fibroblast cells presumably by a redox cycling of MB, which generates an oxidative stress. Data shown here reveal that methyl-beta-cyclodextrin (MCD) blocks both the staining of cells and activation of glucose uptake by directly binding to MB. MCD binding to MB was qualitatively demonstrated by a significantly slower dialysis rate of MB in the presence of MCD. Analysis of the complete spectra of aqueous MB solutions and MB plus MCD solutions by a factor analysis program called SIVVU indicated that these equilibria can be modeled by three species: MB monomer, MB dimer, and MCD-MB inclusion complex. The molar extinction coefficients for each species from 500 to 700nm were determined. The equilibrium association constant (K(a)) for MB dimer formation was measured at 5846+/-30M(-1) and the K(a) for formation of the MCD-MB complex was 310+/-10M(-1). MCD also dramatically enhances the destaining rate of MB-stained cells. The loss of MB from the cell is tightly correlated with the loss of activated glucose uptake. This suggests that the MB activation of glucose uptake is likely not caused by its redox cycling, but more likely the result of a specific interaction between MB and a protein directly involved in the activation of GLUT1.


Subject(s)
Cellular Structures/metabolism , Glucose Transporter Type 1/antagonists & inhibitors , L Cells/metabolism , Methylene Blue/metabolism , beta-Cyclodextrins/metabolism , Animals , Dimerization , Glucose Transporter Type 1/metabolism , Methylene Blue/chemistry , Mice , Time Factors , Water/chemistry
10.
Inorg Chem ; 41(26): 7042-8, 2002 Dec 30.
Article in English | MEDLINE | ID: mdl-12495342

ABSTRACT

[Cr(VI)O(4)](2)(-) is reduced to [Cr(V)(O(2))(4)](3)(-) by hydrogen peroxide in strongly basic media where the acid dissociation of H(2)O(2) (pK(a) = 11.65) is appreciable. The reaction is first order in chromium(VI) and inhibited by hydroxide. The hydrogen peroxide dependence is defined by the form of the effective pseudo-first-order rate constant: k(eff) = [H(2)O(2)](3)/(K(1) + K(2)[H(2)O(2)] + K(3)[HO(2)(-)]) with K(1) = 175(43) s x M(3), K(2) = 403(18) s x M(2), and K(3) = 1422(34) s x M(2). Hydrogen peroxide anion initially attacks chromate, and subsequent equilibrium steps that exchange oxo groups for three peroxo groups precede a rate-determining, one-electron, intramolecular reduction step.

11.
J Org Chem ; 67(8): 2677-81, 2002 Apr 19.
Article in English | MEDLINE | ID: mdl-11950316

ABSTRACT

A substituted anthraquinone (AQ), previously shown to photochemically generate benzaldehyde in methanol solution, was attached to a commercially available resin via an 11 carbon tether and an amide bond. Photolysis of the polymer-bound AQ with visible or 350 nm UV light resulted in the formation of benzaldehyde in yields of 50-55% as determined by HPLC. The phenolic positions in the polymer were then alkylated using benzyl bromide and 1-iodo-3-(4-nitrophenyl)propane in a coupling reaction with K(2)CO(3) as a base and a solution-phase proton shuttle. Photolysis of these alkylated polymers resulted in the formation of benzaldehyde (54-89%) and 3-(4-nitrophenyl)-propanal (58-67%). The yields of both aldehydes dropped considerably with subsequent realkylation and photolysis, and the polymer beads began to show signs of deterioration. This is the first time that aldehydes have been made photochemically on a solid-supported phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...