Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 95(11): 4764-4775, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29293712

ABSTRACT

Improving feed efficiency in cattle is important because it increases profitability by reducing costs, and it also shrinks the environmental footprint of cattle production by decreasing manure and greenhouse gas emissions. Residual feed intake (RFI) is 1 measurement of feed efficiency and is the difference between actual and predicted feed intake. Residual feed intake is a complex trait with moderate heritability, but the genes and biological processes associated with its variation still need to be found. We explored the variation in expression of genes using RNA sequencing to find genes whose expression was associated with RFI and then investigated the pathways that are enriched for these genes. In this study, we used samples from growing Angus bulls (muscle and liver tissues) and lactating Holstein cows (liver tissue and white blood cells) divergently selected for low and high RFI. Within each breed-tissue combination, the correlation between the expression of genes and RFI phenotypes, as well as GEBV, was calculated to determine the genes whose expression was correlated with RFI. There were 16,039 genes expressed in more than 25% of samples in 1 or more tissues. The expression of 6,143 genes was significantly associated with RFI phenotypes, and expression of 2,343 genes was significantly associated with GEBV for RFI ( < 0.05) in at least 1 tissue. The genes whose expression was correlated with RFI phenotype (or GEBV) within each breed-tissue combination were enriched for 158 (78) biological processes (Fisher Exact Statistics for gene-enrichment analysis, EASE score < 0.1) and associated with 13 (13) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways ( < 0.05 and fold enrichment > 2). These biological processes were related to regulation of transcription, translation, energy generation, cell cycling, apoptosis, and proteolysis. However, the direction of the correlation between RFI and gene expression in some cases reversed between tissues. For instance, low levels of proteolysis in muscle were associated with high efficiency in growing bulls, but high levels of proteolysis in white blood cells were associated with efficiency of milk production in lactating cows.


Subject(s)
Cattle/genetics , Eating , Fertility , Genome/genetics , Animal Feed/analysis , Animals , Bayes Theorem , Breeding , Cattle/blood , Cattle/physiology , Female , Lactation , Liver/metabolism , Male , Muscles , Phenotype , Sequence Analysis, RNA/veterinary
2.
BMC Genomics ; 17: 144, 2016 Feb 27.
Article in English | MEDLINE | ID: mdl-26920147

ABSTRACT

BACKGROUND: Dense SNP genotypes are often combined with complex trait phenotypes to map causal variants, study genetic architecture and provide genomic predictions for individuals with genotypes but no phenotype. A single method of analysis that jointly fits all genotypes in a Bayesian mixture model (BayesR) has been shown to competitively address all 3 purposes simultaneously. However, BayesR and other similar methods ignore prior biological knowledge and assume all genotypes are equally likely to affect the trait. While this assumption is reasonable for SNP array genotypes, it is less sensible if genotypes are whole-genome sequence variants which should include causal variants. RESULTS: We introduce a new method (BayesRC) based on BayesR that incorporates prior biological information in the analysis by defining classes of variants likely to be enriched for causal mutations. The information can be derived from a range of sources, including variant annotation, candidate gene lists and known causal variants. This information is then incorporated objectively in the analysis based on evidence of enrichment in the data. We demonstrate the increased power of BayesRC compared to BayesR using real dairy cattle genotypes with simulated phenotypes. The genotypes were imputed whole-genome sequence variants in coding regions combined with dense SNP markers. BayesRC increased the power to detect causal variants and increased the accuracy of genomic prediction. The relative improvement for genomic prediction was most apparent in validation populations that were not closely related to the reference population. We also applied BayesRC to real milk production phenotypes in dairy cattle using independent biological priors from gene expression analyses. Although current biological knowledge of which genes and variants affect milk production is still very incomplete, our results suggest that the new BayesRC method was equal to or more powerful than BayesR for detecting candidate causal variants and for genomic prediction of milk traits. CONCLUSIONS: BayesRC provides a novel and flexible approach to simultaneously improving the accuracy of QTL discovery and genomic prediction by taking advantage of prior biological knowledge. Approaches such as BayesRC will become increasing useful as biological knowledge accumulates regarding functional regions of the genome for a range of traits and species.


Subject(s)
Genomics/methods , Models, Genetic , Quantitative Trait Loci , Animals , Bayes Theorem , Cattle , Female , Genotype , Male , Phenotype , Polymorphism, Single Nucleotide
3.
Reprod Fertil Dev ; 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25701950

ABSTRACT

The tammar wallaby (Macropus eugenii), an Australian marsupial, has evolved a different lactation strategy compared with eutherian mammals, making it a valuable comparative model for lactation studies. The tammar mammary gland was investigated for changes in gene expression during key stages of the lactation cycle using microarrays. Differentially regulated genes were identified, annotated and subsequent gene ontologies, pathways and molecular networks analysed. Major milk-protein gene expression changes during lactation were in accord with changes in milk-protein secretion. However, other gene expression changes included changes in genes affecting mRNA stability, hormone and cytokine signalling and genes for transport and metabolism of amino acids and lipids. Some genes with large changes in expression have poorly known roles in lactation. For instance, SIM2 was upregulated at lactation initiation and may inhibit proliferation and involution of mammary epithelial cells, while FUT8 was upregulated in Phase 3 of lactation and may support the large increase in milk volume that occurs at this point in the lactation cycle. This pattern of regulation has not previously been reported and suggests that these genes may play a crucial regulatory role in marsupial milk production and are likely to play a related role in other mammals.

SELECTION OF CITATIONS
SEARCH DETAIL
...