Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Eur J Haematol ; 113(3): 351-356, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38804098

ABSTRACT

BACKGROUND: Precursor plasma cell disorders such as monoclonal gammopathy of undetermined significance (MGUS) always precede the development of active malignancies such as multiple myeloma (MM). There is a need for novel biomarkers to identify those patients with such precursor plasma cell disorders who rapidly progress to MM. Plasma-derived extracellular vesicles (EVs) may serve as a reservoir of potential biomarkers that can shed light on the pathogenesis and disease biology of MM. METHODS: This study isolated small EVs (SEVs) and large EVs (LEVs) from the platelet-poor peripheral blood plasma of MGUS (n = 9) and MM (n = 12) patients using the size exclusion chromatography-based method and evaluated their proteome using a label-free proteomics workflow. RESULTS: In total, 2055 proteins were identified in SEVs, while 2794 proteins were identified in LEVs. The transferrin receptor (or CD71) protein was upregulated in both populations of EVs derived from MM patients compared to MGUS patients and was of prognostic significance. Similarly, three isoforms of serum amyloid A (SAA) protein, SAA1, SAA2, and SAA4, were also highly upregulated in SEVs within MM patients relative to MGUS patients. Finally, CD40 expression was also higher in the LEVs derived from MM patients than in MGUS patients. CONCLUSIONS: This study demonstrates the feasibility of successfully isolating both SEVs and LEVs from the peripheral blood of patients with plasma cell disorders and quantifying protein biomarkers within these EVs that could be of prognostic and diagnostic interest.


Subject(s)
Extracellular Vesicles , Monoclonal Gammopathy of Undetermined Significance , Multiple Myeloma , Proteome , Proteomics , Humans , Extracellular Vesicles/metabolism , Multiple Myeloma/diagnosis , Multiple Myeloma/blood , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Proteomics/methods , Male , Monoclonal Gammopathy of Undetermined Significance/diagnosis , Monoclonal Gammopathy of Undetermined Significance/blood , Monoclonal Gammopathy of Undetermined Significance/metabolism , Monoclonal Gammopathy of Undetermined Significance/pathology , Female , Middle Aged , Aged , Biomarkers, Tumor/blood , Precancerous Conditions/diagnosis , Precancerous Conditions/metabolism , Precancerous Conditions/blood , Precancerous Conditions/pathology , Biomarkers , Prognosis
2.
Am J Clin Pathol ; 161(5): 451-462, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38113371

ABSTRACT

OBJECTIVES: Recent work has demonstrated that automated fluorescence flow cytometry (FLC) is a potential alternative for the detection and quantification of Plasmodium parasites. The objective of this study was to apply this novel FLC method to detect and quantify Babesia parasites in venous blood and compare results to light microscopy and polymerase chain reaction methods. METHODS: An automated hematology/malaria analyzer (XN-31; Sysmex) was used to detect and quantify B microti-infected red blood cells from residual venous blood samples (n = 250: Babesia positive, n = 170; Babesia negative, n = 80). As no instrument software currently exists for Babesia, qualitative and quantitative machine learning (ML) algorithms were developed to facilitate analysis. RESULTS: Performance of the ML models was verified against the XN-31 software using P falciparum-infected samples. When applied to Babesia-infected samples, the qualitative ML model demonstrated an area under the curve (AUC) of 0.956 (sensitivity, 95.9%; specificity, 83.3%) relative to polymerase chain reaction. For valid scattergrams, the qualitive model achieved an AUC of 1.0 (sensitivity and specificity, 100%), while the quantitative model demonstrated an AUC of 0.986 (sensitivity, 94.4%; specificity, 100%). CONCLUSIONS: This investigation demonstrates that Babesia parasites can be detected and quantified directly from venous blood using FLC. Although promising, opportunities remain to improve the general applicability of the method.


Subject(s)
Babesia , Babesiosis , Erythrocytes , Flow Cytometry , Flow Cytometry/methods , Humans , Babesiosis/diagnosis , Babesiosis/blood , Erythrocytes/parasitology , Babesia/isolation & purification , Babesia/genetics , Machine Learning , Polymerase Chain Reaction/methods , Sensitivity and Specificity
3.
JCI Insight ; 8(22)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37815864

ABSTRACT

Aging and many illnesses and injuries impair skeletal muscle mass and function, but the molecular mechanisms are not well understood. To better understand the mechanisms, we generated and studied transgenic mice with skeletal muscle-specific expression of growth arrest and DNA damage inducible α (GADD45A), a signaling protein whose expression in skeletal muscle rises during aging and a wide range of illnesses and injuries. We found that GADD45A induced several cellular changes that are characteristic of skeletal muscle atrophy, including a reduction in skeletal muscle mitochondria and oxidative capacity, selective atrophy of glycolytic muscle fibers, and paradoxical expression of oxidative myosin heavy chains despite mitochondrial loss. These cellular changes were at least partly mediated by MAP kinase kinase kinase 4, a protein kinase that is directly activated by GADD45A. By inducing these changes, GADD45A decreased the mass of muscles that are enriched in glycolytic fibers, and it impaired strength, specific force, and endurance exercise capacity. Furthermore, as predicted by data from mouse models, we found that GADD45A expression in skeletal muscle was associated with muscle weakness in humans. Collectively, these findings identify GADD45A as a mediator of mitochondrial loss, atrophy, and weakness in mouse skeletal muscle and a potential target for muscle weakness in humans.


Subject(s)
Mitochondria, Muscle , Muscle, Skeletal , Muscular Atrophy , Animals , Humans , Mice , Aging , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Mitochondria, Muscle/metabolism , Muscle Weakness/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/pathology
4.
J Proteome Res ; 21(8): 2045-2054, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35849720

ABSTRACT

Targeted mass spectrometry-based platforms have become a valuable tool for the sensitive and specific detection of protein biomarkers in clinical and research settings. Traditionally, developing a targeted assay for peptide quantification has involved manually preselecting several fragment ions and establishing a limit of detection (LOD) and a lower limit of quantitation (LLOQ) for confident detection of the target. Established thresholds such as LOD and LLOQ, however, inherently sacrifice sensitivity to afford specificity. Here, we demonstrate that machine learning can be applied to qualitative PRM assays to discriminate positive from negative samples more effectively than a traditional approach utilizing conventional methods. To demonstrate the utility of this method, we trained an ensemble machine learning model using 282 SARS-CoV-2 positive and 994 SARS-CoV-2 negative nasopharyngeal swabs (NP swab) analyzed using a targeted PRM method. This model was then validated using an independent set of 200 positive and 150 negative samples and achieved a sensitivity of 92% relative to results obtained by RT-PCR, which was superior to a traditional approach that resulted in 86.5% sensitivity when analyzing the same data. These results demonstrate that machine learning can be applied to qualitative PRM assays and results in superior performance relative to traditional methods.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Machine Learning , Mass Spectrometry/methods , Sensitivity and Specificity
5.
Clin Proteomics ; 19(1): 16, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35590248

ABSTRACT

BACKGROUND: Glucagon serves as an important regulatory hormone for regulating blood glucose concentration with tight feedback control exerted by insulin and glucose. There are critical gaps in our understanding of glucagon kinetics, pancreatic α cell function and intra-islet feedback network that are disrupted in type 1 diabetes. This is important for translational research applications of evolving dual-hormone (insulin + glucagon) closed-loop artificial pancreas algorithms and their usage in type 1 diabetes. Thus, it is important to accurately measure glucagon kinetics in vivo and to develop robust models of glucose-insulin-glucagon interplay that could inform next generation of artificial pancreas algorithms. METHODS: Here, we describe the administration of novel 13C15N heavy isotope-containing glucagon tracers-FF glucagon [(Phe 6 13C9,15N; Phe 22 13C9,15N)] and FFLA glucagon [(Phe 6 13C9,15N; Phe 22 13C9,15N; Leu 14 13C6,15N; Ala 19 13C3)] followed by anti-glucagon antibody-based enrichment and LC-MS/MS based-targeted assays using high-resolution mass spectrometry to determine levels of infused glucagon in plasma samples. The optimized assay results were applied for measurement of glucagon turnover in subjects with and without type 1 diabetes infused with isotopically labeled glucagon tracers. RESULTS: The limit of quantitation was found to be 1.56 pg/ml using stable isotope-labeled glucagon as an internal standard. Intra and inter-assay variability was < 6% and < 16%, respectively, for FF glucagon while it was < 5% and < 23%, respectively, for FFLA glucagon. Further, we carried out a novel isotope dilution technique using glucagon tracers for studying glucagon kinetics in type 1 diabetes. CONCLUSIONS: The methods described in this study for simultaneous detection and quantitation of glucagon tracers have clinical utility for investigating glucagon kinetics in vivo in humans.

7.
Obesity (Silver Spring) ; 30(5): 1091-1104, 2022 05.
Article in English | MEDLINE | ID: mdl-35470975

ABSTRACT

OBJECTIVE: The health benefits of exercise are well documented, but several exercise-response parameters are attenuated in individuals with obesity. The goal of this pilot study was to identify molecular mechanisms that may influence exercise response with obesity. METHODS: A multi-omics comparison of the transcriptome, proteome, and phosphoproteome in muscle from a preliminary cohort of lean individuals (n = 4) and individuals with obesity (n = 4) was performed, before and after a single bout of 30 minutes of unilateral cycling at 70% maximal oxygen uptake (VO2 peak). Mass spectrometry and RNA sequencing were used to interrogate the proteome, phosphoproteome, and transcriptome from muscle biopsy tissue. RESULTS: The main findings are that individuals with obesity exhibited transcriptional and proteomic signatures consistent with reduced mitochondrial function, protein synthesis, and glycogen synthesis. Furthermore, individuals with obesity demonstrated markedly different transcriptional, proteomic, and phosphoproteomic responses to exercise, particularly biosynthetic pathways of glycogen synthesis and protein synthesis. Casein kinase II subunit alpha and glycogen synthase kinase-3ß signaling was identified as exercise-response pathways that were notably altered by obesity. CONCLUSIONS: Opportunities to enhance exercise responsiveness by targeting specific molecular pathways that are disrupted in skeletal muscle from individuals with obesity await a better understanding of the precise molecular mechanisms that may limit exercise-response pathways in obesity.


Subject(s)
Proteome , Proteomics , Glycogen/metabolism , Humans , Muscle, Skeletal/metabolism , Obesity/metabolism , Pilot Projects , Proteome/metabolism
8.
J Proteome Res ; 21(1): 142-150, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34779632

ABSTRACT

COVID-19 vaccines are becoming more widely available, but accurate and rapid testing remains a crucial tool for slowing the spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus. Although the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) remains the most prevalent testing methodology, numerous tests have been developed that are predicated on detection of the SARS-CoV-2 nucleocapsid protein, including liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoassay-based approaches. The continuing emergence of SARS-CoV-2 variants has complicated these approaches, as both qRT-PCR and antigen detection methods can be prone to missing viral variants. In this study, we describe several COVID-19 cases where we were unable to detect the expected peptide targets from clinical nasopharyngeal swabs. Whole genome sequencing revealed that single nucleotide polymorphisms in the gene encoding the viral nucleocapsid protein led to sequence variants that were not monitored in the targeted assay. Minor modifications to the LC-MS/MS method ensured detection of the variants of the target peptide. Additional nucleocapsid variants could be detected by performing the bottom-up proteomic analysis of whole viral genome-sequenced samples. This study demonstrates the importance of considering variants of SARS-CoV-2 in the assay design and highlights the flexibility of mass spectrometry-based approaches to detect variants as they evolve.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , Chromatography, Liquid , Humans , Nucleocapsid/genetics , Peptides , Proteomics , Tandem Mass Spectrometry
9.
Front Cell Dev Biol ; 9: 735001, 2021.
Article in English | MEDLINE | ID: mdl-34805145

ABSTRACT

Extracellular vesicles (EVs) are emerging mediators of intercellular communication in nonalcoholic steatohepatitis (NASH). Palmitate, a lipotoxic saturated fatty acid, activates hepatocellular endoplasmic reticulum stress, which has been demonstrated to be important in NASH pathogenesis, including in the release of EVs. We have previously demonstrated that the release of palmitate-stimulated EVs is dependent on the de novo synthesis of ceramide, which is trafficked by the ceramide transport protein, STARD11. The trafficking of ceramide is a critical step in the release of lipotoxic EVs, as cells deficient in STARD11 do not release palmitate-stimulated EVs. Here, we examined the hypothesis that protein cargoes are trafficked to lipotoxic EVs in a ceramide-dependent manner. We performed quantitative proteomic analysis of palmitate-stimulated EVs in control and STARD11 knockout hepatocyte cell lines. Proteomics was performed on EVs isolated by size exclusion chromatography, ultracentrifugation, and density gradient separation, and EV proteins were measured by mass spectrometry. We also performed human EV proteomics from a control and a NASH plasma sample, for comparative analyses with hepatocyte-derived lipotoxic EVs. Size exclusion chromatography yielded most unique EV proteins. Ceramide-dependent lipotoxic EVs contain damage-associated molecular patterns and adhesion molecules. Haptoglobin, vascular non-inflammatory molecule-1, and insulin-like growth factor-binding protein complex acid labile subunit were commonly detected in NASH and hepatocyte-derived ceramide-dependent EVs. Lipotoxic EV proteomics provides novel candidate proteins to investigate in NASH pathogenesis and as diagnostic biomarkers for hepatocyte-derived EVs in NASH patients.

10.
Clin Proteomics ; 18(1): 25, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34686148

ABSTRACT

SARS-CoV-2, a novel human coronavirus, has created a global disease burden infecting > 100 million humans in just over a year. RT-PCR is currently the predominant method of diagnosing this viral infection although a variety of tests to detect viral antigens have also been developed. In this study, we adopted a SISCAPA-based enrichment approach using anti-peptide antibodies generated against peptides from the nucleocapsid protein of SARS-CoV-2. We developed a targeted workflow in which nasopharyngeal swab samples were digested followed by enrichment of viral peptides using the anti-peptide antibodies and targeted parallel reaction monitoring (PRM) analysis using a high-resolution mass spectrometer. This workflow was applied to 41 RT-PCR-confirmed clinical SARS-CoV-2 positive nasopharyngeal swab samples and 30 negative samples. The workflow employed was highly specific as none of the target peptides were detected in negative samples. Further, the detected peptides showed a positive correlation with the viral loads as measured by RT-PCR Ct values. The SISCAPA-based platform described in the current study can serve as an alternative method for SARS-CoV-2 viral detection and can also be applied for detecting other microbial pathogens directly from clinical samples.

11.
Cell Rep ; 36(8): 109613, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34433033

ABSTRACT

Coordinated communication among pancreatic islet cells is necessary for maintenance of glucose homeostasis. In diabetes, chronic exposure to pro-inflammatory cytokines has been shown to perturb ß cell communication and function. Compelling evidence has implicated extracellular vesicles (EVs) in modulating physiological and pathological responses to ß cell stress. We report that pro-inflammatory ß cell small EVs (cytokine-exposed EVs [cytoEVs]) induce ß cell dysfunction, promote a pro-inflammatory islet transcriptome, and enhance recruitment of CD8+ T cells and macrophages. Proteomic analysis of cytoEVs shows enrichment of the chemokine CXCL10, with surface topological analysis depicting CXCL10 as membrane bound on cytoEVs to facilitate direct binding to CXCR3 receptors on the surface of ß cells. CXCR3 receptor inhibition reduced CXCL10-cytoEV binding and attenuated ß cell dysfunction, inflammatory gene expression, and leukocyte recruitment to islets. This work implies a significant role of pro-inflammatory ß cell-derived small EVs in modulating ß cell function, global gene expression, and antigen presentation through activation of the CXCL10/CXCR3 axis.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Chemokine CXCL10/metabolism , Extracellular Vesicles/metabolism , Receptors, CXCR3/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , Diabetes Mellitus/pathology , Insulin-Secreting Cells/metabolism , Macrophages/metabolism , Male , Mice, Inbred C57BL
12.
Cell Rep Methods ; 1(3)2021 07 26.
Article in English | MEDLINE | ID: mdl-34355211

ABSTRACT

Extracellular vesicles (EVs) are released into blood from multiple organs and carry molecular cargo that facilitates inter-organ communication and an integrated response to physiological and pathological stimuli. Interrogation of the protein cargo of EVs is currently limited by the absence of optimal and reproducible approaches for purifying plasma EVs that are suitable for downstream proteomic analyses. We describe a size-exclusion chromatography (SEC)-based method to purify EVs from platelet-poor plasma (PPP) for proteomics profiling via high-resolution mass spectrometry (SEC-MS). The SEC-MS method identifies more proteins with higher precision than several conventional EV isolation approaches. We apply the SEC-MS method to identify the unique proteomic signatures of EVs released from platelets, adipocytes, muscle cells, and hepatocytes, with the goal of identifying tissue-specific EV markers. Furthermore, we apply the SEC-MS approach to evaluate the effects of a single bout of exercise on EV proteomic cargo in human plasma.


Subject(s)
Extracellular Vesicles , Proteomics , Humans , Proteomics/methods , Proteins/analysis , Extracellular Vesicles/chemistry , Chromatography, Gel , Mass Spectrometry/methods
13.
Mol Cell Proteomics ; 20: 100134, 2021.
Article in English | MEDLINE | ID: mdl-34400346

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has become a global health pandemic. COVID-19 severity ranges from an asymptomatic infection to a severe multiorgan disease. Although the inflammatory response has been implicated in the pathogenesis of COVID-19, the exact nature of dysregulation in signaling pathways has not yet been elucidated, underscoring the need for further molecular characterization of SARS-CoV-2 infection in humans. Here, we characterize the host response directly at the point of viral entry through analysis of nasopharyngeal swabs. Multiplexed high-resolution MS-based proteomic analysis of confirmed COVID-19 cases and negative controls identified 7582 proteins and revealed significant upregulation of interferon-mediated antiviral signaling in addition to multiple other proteins that are not encoded by interferon-stimulated genes or well characterized during viral infections. Downregulation of several proteasomal subunits, E3 ubiquitin ligases, and components of protein synthesis machinery was significant upon SARS-CoV-2 infection. Targeted proteomics to measure abundance levels of MX1, ISG15, STAT1, RIG-I, and CXCL10 detected proteomic signatures of interferon-mediated antiviral signaling that differentiated COVID-19-positive from COVID-19-negative cases. Phosphoproteomic analysis revealed increased phosphorylation of several proteins with known antiviral properties as well as several proteins involved in ciliary function (CEP131 and CFAP57) that have not previously been implicated in the context of coronavirus infections. In addition, decreased phosphorylation levels of AKT and PKC, which have been shown to play varying roles in different viral infections, were observed in infected individuals relative to controls. These data provide novel insights that add depth to our understanding of SARS-CoV-2 infection in the upper airway and establish a proteomic signature for this viral infection.


Subject(s)
COVID-19/metabolism , Host-Pathogen Interactions/physiology , Nasopharynx/virology , Proteome/analysis , COVID-19/immunology , COVID-19/virology , Chromatography, Liquid , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Interferons/immunology , Interferons/metabolism , Phosphoproteins/analysis , Phosphoproteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Kinase C/metabolism , Proteome/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Opioid/metabolism , Signal Transduction , Tandem Mass Spectrometry , Ubiquitin/metabolism
14.
EBioMedicine ; 69: 103465, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34229274

ABSTRACT

BACKGROUND: The COVID-19 pandemic caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has overwhelmed health systems worldwide and highlighted limitations of diagnostic testing. Several types of diagnostic tests including RT-PCR-based assays and antigen detection by lateral flow assays, each with their own strengths and weaknesses, have been developed and deployed in a short time. METHODS: Here, we describe an immunoaffinity purification approach followed a by high resolution mass spectrometry-based targeted qualitative assay capable of detecting SARS-CoV-2 viral antigen from nasopharyngeal swab samples. Based on our discovery experiments using purified virus, recombinant viral protein and nasopharyngeal swab samples from COVID-19 positive patients, nucleocapsid protein was selected as a target antigen. We then developed an automated antibody capture-based workflow coupled to targeted high-field asymmetric waveform ion mobility spectrometry (FAIMS) - parallel reaction monitoring (PRM) assay on an Orbitrap Exploris 480 mass spectrometer. An ensemble machine learning-based model for determining COVID-19 positive samples was developed using fragment ion intensities from the PRM data. FINDINGS: The optimized targeted assay, which was used to analyze 88 positive and 88 negative nasopharyngeal swab samples for validation, resulted in 98% (95% CI = 0.922-0.997) (86/88) sensitivity and 100% (95% CI = 0.958-1.000) (88/88) specificity using RT-PCR-based molecular testing as the reference method. INTERPRETATION: Our results demonstrate that direct detection of infectious agents from clinical samples by tandem mass spectrometry-based assays have potential to be deployed as diagnostic assays in clinical laboratories, which has hitherto been limited to analysis of pure microbial cultures. FUNDING: This study was supported by DBT/Wellcome Trust India Alliance Margdarshi Fellowship grant IA/M/15/1/502023 awarded to AP and the generosity of Eric and Wendy Schmidt.


Subject(s)
COVID-19 Serological Testing/methods , Immunoassay/methods , Mass Spectrometry/methods , Animals , Antigens, Viral/chemistry , Antigens, Viral/immunology , Automation, Laboratory/methods , Automation, Laboratory/standards , COVID-19 Serological Testing/standards , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immunoassay/standards , Machine Learning , Mass Spectrometry/standards , Phosphoproteins/chemistry , Phosphoproteins/immunology , Sensitivity and Specificity
15.
J Proteome Res ; 20(8): 4165-4175, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34292740

ABSTRACT

Since the recent outbreak of COVID-19, there have been intense efforts to understand viral pathogenesis and host immune response to combat SARS-CoV-2. It has become evident that different host alterations can be identified in SARS-CoV-2 infection based on whether infected cells, animal models or clinical samples are studied. Although nasopharyngeal swabs are routinely collected for SARS-CoV-2 detection by RT-PCR testing, host alterations in the nasopharynx at the proteomic level have not been systematically investigated. Thus, we sought to characterize the host response through global proteome profiling of nasopharyngeal swab specimens. A mass spectrometer combining trapped ion mobility spectrometry (TIMS) and high-resolution QTOF mass spectrometer with parallel accumulation-serial fragmentation (PASEF) was deployed for unbiased proteome profiling. First, deep proteome profiling of pooled nasopharyngeal swab samples was performed in the PASEF enabled DDA mode, which identified 7723 proteins that were then used to generate a spectral library. This approach provided peptide level evidence of five missing proteins for which MS/MS spectrum and mobilograms were validated with synthetic peptides. Subsequently, quantitative proteomic profiling was carried out for 90 individual nasopharyngeal swab samples (45 positive and 45 negative) in DIA combined with PASEF, termed as diaPASEF mode, which resulted in a total of 5023 protein identifications. Of these, 577 proteins were found to be upregulated in SARS-CoV-2 positive samples. Functional analysis of these upregulated proteins revealed alterations in several biological processes including innate immune response, viral protein assembly, and exocytosis. To the best of our knowledge, this study is the first to deploy diaPASEF for quantitative proteomic profiling of clinical samples and shows the feasibility of adopting such an approach to understand mechanisms and pathways altered in diseases.


Subject(s)
COVID-19 , Proteome , Humans , Nasopharynx , Proteomics , SARS-CoV-2 , Specimen Handling , Tandem Mass Spectrometry
16.
Clin Chem ; 67(11): 1545-1553, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34240163

ABSTRACT

BACKGROUND: We evaluated the analytical sensitivity and specificity of 4 rapid antigen diagnostic tests (Ag RDTs) for severe acute respiratory syndrome coronavirus 2, using reverse transcription quantitative PCR (RT-qPCR) as the reference method and further characterizing samples using droplet digital quantitative PCR (ddPCR) and a mass spectrometric antigen test. METHODS: Three hundred fifty (150 negative and 200 RT-qPCR positive) residual PBS samples were tested for antigen using the BD Veritor lateral flow (LF), ACON LF, ACON fluorescence immunoassay (FIA), and LumiraDx FIA. ddPCR was performed on RT-qPCR-positive samples to quantitate the viral load in copies/mL applied to each Ag RDT. Mass spectrometric antigen testing was performed on PBS samples to obtain a set of RT-qPCR-positive, antigen-positive samples for further analysis. RESULTS: All Ag RDTs had nearly 100% specificity compared to RT-qPCR. Overall analytical sensitivity varied from 66.5% to 88.3%. All methods detected antigen in samples with viral load >1 500 000 copies/mL RNA, and detected ≥75% of samples with viral load of 500 000 to 1 500 000 copies/mL. The BD Veritor LF detected only 25% of samples with viral load between 50 000 to 500 000 copies/mL, compared to 75% for the ACON LF device and >80% for LumiraDx and ACON FIA. The ACON FIA detected significantly more samples with viral load <50 000 copies/mL compared to the BD Veritor. Among samples with detectable antigen and viral load <50 000 copies/mL, sensitivity of the Ag RDT varied between 13.0% (BD Veritor) and 78.3% (ACON FIA). CONCLUSIONS: Ag RDTs differ significantly in analytical sensitivity, particularly at viral load <500 000 copies/mL.


Subject(s)
Antigens, Viral/analysis , COVID-19 Testing/methods , Point-of-Care Testing , Humans , Mass Spectrometry , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/immunology , Sensitivity and Specificity , Viral Load
17.
Nanomedicine ; 36: 102430, 2021 08.
Article in English | MEDLINE | ID: mdl-34174416

ABSTRACT

There is increasing interest in the development of minimally invasive biomarkers for the diagnosis and prognosis of NAFLD via extracellular vesicles (EV). Plasma EVs were isolated by differential ultracentrifugation and quantified by nanoparticle tracking analysis from pre (n = 28) and post (n = 28) weight loss patients. In the pre weight loss group 22 had NAFLD. Nanoplasmon enhanced scattering (nPES) of gold nanoparticles conjugated to hepatocyte-specific antibodies was employed to identify hepatocyte-specific EVs. Complex lipid panel and targeted sphingolipids were performed. Logistic regression analysis was used to identify predictors of NAFLD. Plasma levels of EVs and hepatocyte-derived EVs are dynamic and decrease following NAFLD resolution due to weight loss surgery. Hepatocyte-derived EVs correlate with steatosis in NAFLD patients and steatosis and inflammation in NASH patients. Plasma levels of small EVs correlate with EV sphingolipids in patients with NASH. Hepatocyte-derived EVs measured by the nPES assay could serve as a point-of-care test for NAFLD.


Subject(s)
Hepatocytes/metabolism , Non-alcoholic Fatty Liver Disease/blood , Weight Loss , Adult , Biomarkers/blood , Extracellular Vesicles , Female , Humans , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/surgery
18.
J Proteome Res ; 20(7): 3404-3413, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34077217

ABSTRACT

SARS-CoV-2 infection has become a major public health burden and affects many organs including lungs, kidneys, the liver, and the brain. Although the virus is readily detected and diagnosed using nasopharyngeal swabs by reverse transcriptase polymerase chain reaction (RT-PCR), detection of its presence in body fluids is fraught with difficulties. A number of published studies have failed to detect viral RNA by RT-PCR methods in urine. Although microbial identification in clinical microbiology using mass spectrometry is undertaken after culture, here we undertook a mass spectrometry-based approach that employed an enrichment step to capture and detect SARS-CoV-2 nucleocapsid protein directly from urine of COVID-19 patients without any culture. We detected SARS-CoV-2 nucleocapsid protein-derived peptides from 13 out of 39 urine samples. Further, a subset of COVID-19 positive and COVID-19 negative urine samples validated by mass spectrometry were used for the quantitative proteomics analysis. Proteins with increased abundance in urine of SARS-CoV-2 positive individuals were enriched in the acute phase response, regulation of complement system, and immune response. Notably, a number of renal proteins such as podocin (NPHS2), an amino acid transporter (SLC36A2), and sodium/glucose cotransporter 5 (SLC5A10), which are intimately involved in normal kidney function, were decreased in the urine of COVID-19 patients. Overall, the detection of viral antigens in urine using mass spectrometry and alterations of the urinary proteome could provide insights into understanding the pathogenesis of COVID-19.


Subject(s)
Body Fluids , COVID-19 , Antigens, Viral , Humans , Immunity , Mass Spectrometry , Phosphoproteins , RNA, Viral , SARS-CoV-2
19.
Cell ; 181(7): 1464-1474, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32589957

ABSTRACT

Exercise provides a robust physiological stimulus that evokes cross-talk among multiple tissues that when repeated regularly (i.e., training) improves physiological capacity, benefits numerous organ systems, and decreases the risk for premature mortality. However, a gap remains in identifying the detailed molecular signals induced by exercise that benefits health and prevents disease. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) was established to address this gap and generate a molecular map of exercise. Preclinical and clinical studies will examine the systemic effects of endurance and resistance exercise across a range of ages and fitness levels by molecular probing of multiple tissues before and after acute and chronic exercise. From this multi-omic and bioinformatic analysis, a molecular map of exercise will be established. Altogether, MoTrPAC will provide a public database that is expected to enhance our understanding of the health benefits of exercise and to provide insight into how physical activity mitigates disease.


Subject(s)
Exercise/physiology , Physical Endurance/physiology , Adolescent , Adult , Animals , Child , Female , Humans , Male , Middle Aged , Oxygen Consumption , Research Design , Young Adult
20.
JCI Insight ; 4(18)2019 09 19.
Article in English | MEDLINE | ID: mdl-31534057

ABSTRACT

Insulin resistance associates with increased risk for cognitive decline and dementia; however, the underpinning mechanisms for this increased risk remain to be fully defined. As insulin resistance impairs mitochondrial oxidative metabolism and increases ROS in skeletal muscle, we considered whether similar events occur in the brain, which - like muscle - is rich in insulin receptors and mitochondria. We show that high-fat diet-induced (HFD-induced) brain insulin resistance in mice decreased mitochondrial ATP production rate and oxidative enzyme activities in brain regions rich in insulin receptors. HFD increased ROS emission and reduced antioxidant enzyme activities, with the concurrent accumulation of oxidatively damaged mitochondrial proteins and increased mitochondrial fission. Improvement of insulin sensitivity by both aerobic exercise and metformin ameliorated HFD-induced abnormalities. Moreover, insulin-induced enhancement of ATP production in primary cortical neurons and astrocytes was counteracted by the insulin receptor antagonist S961, demonstrating a direct effect of insulin resistance on brain mitochondria. Further, intranasal S961 administration prevented exercise-induced improvements in ATP production and ROS emission during HFD, supporting that exercise enhances brain mitochondrial function by improving insulin action. These results support that insulin sensitizing by exercise and metformin restores brain mitochondrial function in insulin-resistant states.


Subject(s)
Cerebral Cortex/drug effects , Insulin Resistance/physiology , Insulin/metabolism , Metformin/administration & dosage , Mitochondria/drug effects , Physical Conditioning, Animal/physiology , Receptor, Insulin/metabolism , Administration, Intranasal , Administration, Oral , Animals , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/pathology , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/pathology , Diet, High-Fat/adverse effects , Disease Models, Animal , Glucose/metabolism , Humans , Mice , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Dynamics/drug effects , Neurons/cytology , Neurons/drug effects , Neurons/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Peptides/administration & dosage , Primary Cell Culture , Receptor, Insulin/antagonists & inhibitors , Sedentary Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...