Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(5): 7479-7493, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33726248

ABSTRACT

Polycrystalline materials can mediate efficient frequency up-conversion for mid-infrared light. Motivated by the need to understand the properties of the harmonic and supercontinuum radiation from such media, we utilize realistic numerical simulations to reveal its complex temporal and spatial structure. We show that the generated radiation propagates in the form of long-duration pulse trains that can be difficult to compress and that optical filamentation in high-energy pulses gives rise to fine-structured beam profiles. We identify trends concerning pulse energy, sample length, and the microstructure of the material that can inform optimization for different applications.

2.
Opt Express ; 27(3): 2867-2885, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30732318

ABSTRACT

Polycrystalline ZnSe is an exciting source of broadband supercontinuum and high-harmonic generation via random quasi phase matching, exhibiting broad transparency in the mid-infrared (0.5-20 µm). In this work, the effects of wavelength, pulse power, intensity, propagation length, and crystallinity on supercontinuum and high harmonic generation are investigated experimentally using ultrafast mid-infrared pulses. Observed harmonic conversion efficiency scales linearly in propagation length, reaching as high as 36%. For the first time to our knowledge, n2 is measured for mid-infrared wavelengths in ZnSe: n2(λ=3.9 µm)=(1.2±0.3)×10-14 cm2/W. Measured n2 is applied to simulations modeling high-harmonic generation in polycrystalline ZnSe as an effective medium.

SELECTION OF CITATIONS
SEARCH DETAIL
...