Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38895307

ABSTRACT

Bacteroides species are successful colonizers of the human gut and can utilize a wide variety of complex polysaccharides and oligosaccharides that are indigestible by the host. To do this, they use enzymes encoded in Polysaccharide Utilization Loci (PULs). While recent work has uncovered the PULs required for use of some polysaccharides, how Bacteroides utilize smaller oligosaccharides is less well studied. Raffinose family oligosaccharides (RFOs) are abundant in plants, especially legumes, and consist of variable units of galactose linked by α-1,6 bonds to a sucrose (glucose α-1-ß-2 fructose) moiety. Previous work showed that an α-galactosidase, BT1871, is required for RFO utilization in Bacteroides thetaiotaomicron. Here, we identify two different types of mutations that increase BT1871 mRNA levels and improve B. thetaiotaomicron growth on RFOs. First, a novel spontaneous duplication of BT1872 and BT1871 places these genes under control of a ribosomal promoter, driving high BT1871 transcription. Second, nonsense mutations in a gene encoding the PUL24 anti-sigma factor likewise increase BT1871 transcription. We then show that hydrolases from PUL22 work together with BT1871 to break down the sucrose moiety of RFOs and determine that the master regulator of carbohydrate utilization (BT4338) plays a role in RFO utilization in B. thetaiotaomicron. Examining the genomes of other Bacteroides species, we found homologs of BT1871 in subset and show that representative strains of species containing a BT1871 homolog grew better on melibiose than species that lack a BT1871 homolog. Altogether, our findings shed light on how an important gut commensal utilizes an abundant dietary oligosaccharide.

2.
J Bacteriol ; 205(8): e0012923, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37439671

ABSTRACT

The dicBF operon of Qin cryptic prophage in Escherichia coli K-12 encodes the small RNA (sRNA) DicF and small protein DicB, which regulate host cell division and are toxic when overexpressed. While new functions of DicB and DicF have been identified in recent years, the mechanisms controlling the expression of the dicBF operon have remained unclear. Transcription from dicBp, the major promoter of the dicBF operon, is repressed by DicA. In this study, we discovered that transcription of the dicBF operon and processing of the polycistronic mRNA is regulated by multiple mechanisms. DicF sRNA accumulates during stationary phase and is processed from the polycistronic dicBF mRNA by the action of both RNase III and RNase E. DicA-mediated transcriptional repression of dicBp can be relieved by an antirepressor protein, Rem, encoded on the Qin prophage. Ectopic production of Rem results in cell filamentation due to strong induction of the dicBF operon, and filamentation is mediated by DicF and DicB. Spontaneous derepression of dicBp occurs in a subpopulation of cells independent of the antirepressor. This phenomenon is reminiscent of the bistable switch of λ phage with DicA and DicC performing functions similar to those of CI and Cro, respectively. Additional experiments demonstrate stress-dependent induction of the dicBF operon. Collectively, our results illustrate that toxic genes carried on cryptic prophages are subject to layered mechanisms of control, some that are derived from the ancestral phage and some that are likely later adaptations. IMPORTANCE Cryptic or defective prophages have lost genes necessary to excise from the bacterial chromosome and produce phage progeny. In recent years, studies have found that cryptic prophage gene products influence diverse aspects of bacterial host cell physiology. However, to obtain a complete understanding of the relationship between cryptic prophages and the host bacterium, identification of the environmental, host, or prophage-encoded factors that induce the expression of cryptic prophage genes is crucial. In this study, we examined the regulation of a cryptic prophage operon in Escherichia coli encoding a small RNA and a small protein that are involved in inhibiting bacterial cell division, altering host metabolism, and protecting the host bacterium from phage infections.


Subject(s)
Escherichia coli K12 , RNA, Small Untranslated , Escherichia coli/genetics , Escherichia coli/metabolism , Prophages/genetics , Escherichia coli K12/genetics , Bacteriophage lambda/genetics , Bacteria/genetics , RNA, Small Untranslated/metabolism
3.
J Bacteriol ; 205(1): e0033322, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36472436

ABSTRACT

Salmonella enterica serovar Typhimurium is an enteric pathogen associated with foodborne disease. Salmonella invades the intestinal epithelium using a type three secretion system encoded on Salmonella pathogenicity island 1 (SPI-1). SPI-1 genes are tightly regulated by a complex feed-forward loop to ensure proper spatial and temporal expression. Most regulatory input is integrated at HilD, through control of hilD mRNA translation or HilD protein activity. The hilD mRNA possesses a 310-nucleotide 3' untranslated region (UTR) that influences HilD and SPI-1 expression, and this regulation is dependent on Hfq and RNase E, cofactors known to mediate small RNA (sRNA) activities. Thus, we hypothesized that the hilD mRNA 3' UTR is a target for sRNAs. Here, we show that two sRNAs, SdsR and Spot 42, regulate SPI-1 by targeting different regions of the hilD mRNA 3' UTR. Regulatory activities of these sRNAs depended on Hfq and RNase E, in agreement with previous roles found for both at the hilD 3' UTR. Salmonella mutants lacking SdsR and Spot 42 had decreased virulence in a mouse model of infection. Collectively, this work suggests that these sRNAs targeting the hilD mRNA 3' UTR increase hilD mRNA levels by interfering with RNase E-dependent mRNA degradation and that this regulatory effect is required for Salmonella invasiveness. Our work provides novel insights into mechanisms of sRNA regulation at bacterial mRNA 3' UTRs and adds to our knowledge of post-transcriptional regulation of the SPI-1 complex feed-forward loop. IMPORTANCE Salmonella enterica serovar Typhimurium is a prominent foodborne pathogen, infecting millions of people a year. To express virulence genes at the correct time and place in the host, Salmonella uses a complex regulatory network that senses environmental conditions. Known for their role in allowing quick responses to stress and virulence conditions, we investigated the role of small RNAs in facilitating precise expression of virulence genes. We found that the 3' untranslated region of the hilD mRNA, encoding a key virulence regulator, is a target for small RNAs and RNase E. The small RNAs stabilize hilD mRNA to allow proper expression of Salmonella virulence genes in the host.


Subject(s)
RNA, Small Untranslated , Transcription Factors , Animals , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , 3' Untranslated Regions , Transcription Factors/metabolism , Genomic Islands , Salmonella typhimurium/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , RNA Stability , Gene Expression Regulation, Bacterial , Bacterial Proteins/metabolism
4.
J Bacteriol ; 204(1): e0037821, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34694902

ABSTRACT

Salmonella enterica serovar Typhimurium invades the intestinal epithelium and induces inflammatory diarrhea using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). Expression of the SPI1 T3SS is controlled by three AraC-like regulators, HilD, HilC, and RtsA, which form a feed-forward regulatory loop that leads to activation of hilA, encoding the main transcriptional regulator of the T3SS structural genes. This complex system is affected by numerous regulatory proteins and environmental signals, many of which act at the level of hilD mRNA translation or HilD protein function. Here, we show that the sRNA MicC blocks translation of the hilD mRNA by base pairing near the ribosome binding site. MicC does not induce degradation of the hilD message. Our data indicate that micC is transcriptionally activated by SlyA, and SlyA feeds into the SPI1 regulatory network solely through MicC. Transcription of micC is negatively regulated by the OmpR/EnvZ two-component system, but this regulation is dependent on SlyA. OmpR/EnvZ control SPI1 expression partially through MicC but also affect expression through other pathways, including an EnvZ-dependent, OmpR-independent mechanism. MicC-mediated regulation plays a role during infection, as evidenced by an SPI1 T3SS-dependent increase in Salmonella fitness in the intestine in the micC deletion mutant. These results further elucidate the complex regulatory network controlling SPI1 expression and add to the list of sRNAs that control this primary virulence factor. IMPORTANCE The Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS) is the primary virulence factor required for causing intestinal disease and initiating systemic infection. The system is regulated in response to a large variety of environmental and physiological factors such that the T3SS is expressed at only the appropriate time and place in the host during infection. Here, we show how the sRNA MicC affects expression of the system. This work adds to our detailed mechanistic studies aimed at a complete understanding of the regulatory circuit.


Subject(s)
Bacterial Proteins/metabolism , Down-Regulation/physiology , RNA, Bacterial/metabolism , Salmonella typhimurium/metabolism , Transcription Factors/metabolism , Type III Secretion Systems/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Down-Regulation/genetics , Gene Expression Regulation, Bacterial/physiology , Host Factor 1 Protein , RNA, Bacterial/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Salmonella typhimurium/genetics , Transcription Factors/genetics , Type III Secretion Systems/genetics
5.
Noncoding RNA ; 7(4)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34698252

ABSTRACT

Many RNA-RNA interactions depend on molecular chaperones to form and remain stable in living cells. A prime example is the RNA chaperone Hfq, which is a critical effector involved in regulatory interactions between small RNAs (sRNAs) and cognate target mRNAs in Enterobacteriaceae. While there is a great deal of in vitro biochemical evidence supporting the model that Hfq enhances rates or affinities of sRNA:mRNA interactions, there is little corroborating in vivo evidence. Here we used in vivo tools including reporter genes, co-purification assays, and super-resolution microscopy to analyze the role of Hfq in RyhB-mediated regulation, and we found that Hfq is often unnecessary for efficient RyhB:mRNA complex formation in vivo. Remarkably, our data suggest that a primary function of Hfq is to promote RyhB-induced cleavage of mRNA targets by RNase E. Moreover, our work indicates that Hfq plays a more limited role in dictating regulatory outcomes following sRNAs RybB and DsrA complex formation with specific target mRNAs. Our investigation helps evaluate the roles played by Hfq in some RNA-mediated regulation.

6.
Cell Rep ; 36(13): 109764, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34592145

ABSTRACT

Small RNAs (sRNAs) are important gene regulators in bacteria. Many sRNAs act post-transcriptionally by affecting translation and degradation of the target mRNAs upon base-pairing interactions. Here we present a general approach combining imaging and mathematical modeling to determine kinetic parameters at different levels of sRNA-mediated gene regulation that contribute to overall regulation efficacy. Our data reveal that certain sRNAs previously characterized as post-transcriptional regulators can regulate some targets co-transcriptionally, leading to a revised model that sRNA-mediated regulation can occur early in an mRNA's lifetime, as soon as the sRNA binding site is transcribed. This co-transcriptional regulation is likely mediated by Rho-dependent termination when transcription-coupled translation is reduced upon sRNA binding. Our data also reveal several important kinetic steps that contribute to the differential regulation of mRNA targets by an sRNA. Particularly, binding of sRNA to the target mRNA may dictate the regulation hierarchy observed within an sRNA regulon.


Subject(s)
Gene Expression Regulation, Bacterial/genetics , RNA, Bacterial/genetics , RNA, Messenger/metabolism , RNA, Small Untranslated/genetics , Bacteria/genetics , Bacteria/metabolism , Bacterial Physiological Phenomena , Escherichia coli/genetics , RNA, Bacterial/metabolism , RNA, Small Untranslated/metabolism , Regulon/genetics
7.
J Bacteriol ; 203(21): e0021721, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34251866

ABSTRACT

Human gut microbiome composition is constantly changing, and diet is a major driver of these changes. Gut microbial species that persist in mammalian hosts for long periods of time must possess mechanisms for sensing and adapting to nutrient shifts to avoid being outcompeted. Global regulatory mechanisms mediated by RNA-binding proteins (RBPs) that govern responses to nutrient shifts have been characterized in Proteobacteria and Firmicutes but remain undiscovered in the Bacteroidetes. Here, we report the identification of RBPs that are broadly distributed across the Bacteroidetes, with many genomes encoding multiple copies. Genes encoding these RBPs are highly expressed in many Bacteroides species. A purified RBP, RbpB, from Bacteroides thetaiotaomicron binds to single-stranded RNA in vitro with an affinity similar to other characterized regulatory RBPs. B. thetaiotaomicron mutants lacking RBPs show dramatic shifts in expression of polysaccharide utilization and capsular polysaccharide loci, suggesting that these RBPs may act as global regulators of polysaccharide metabolism. A B. thetaiotaomicron ΔrbpB mutant shows a growth defect on dietary sugars belonging to the raffinose family of oligosaccharides (RFOs). The ΔrbpB mutant had reduced expression of BT1871, encoding a predicted RFO-degrading melibiase, compared to the wild-type strain. Mutation of BT1871 confirmed that the enzyme it encodes is essential for growth on melibiose and promotes growth on the RFOs raffinose and stachyose. Our data reveal that RbpB is required for optimal expression of BT1871 and other polysaccharide-related genes, suggesting that we have identified an important new family of global regulatory proteins in the Bacteroidetes. IMPORTANCE The human colon houses hundreds of bacterial species, including many belonging to the genus Bacteroides, that aid in breaking down our food to keep us healthy. Bacteroides have many genes responsible for breaking down different dietary carbohydrates, and complex regulatory mechanisms ensure that specific genes are only expressed when the right carbohydrates are available. In this study, we discovered that Bacteroides use a family of RNA-binding proteins as global regulators to coordinate expression of carbohydrate utilization genes. The ability to turn different carbohydrate utilization genes on and off in response to changing nutrient conditions is critical for Bacteroides to live successfully in the gut, and thus the new regulators we have identified may be important for life in the host.


Subject(s)
Bacterial Proteins/metabolism , Bacteroides thetaiotaomicron/metabolism , Gene Expression Regulation, Bacterial/physiology , Polysaccharides, Bacterial/metabolism , RNA-Binding Proteins/metabolism , Bacterial Proteins/genetics , Bacteroides thetaiotaomicron/genetics , Humans , RNA-Binding Proteins/genetics
8.
Nat Commun ; 12(1): 874, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33558533

ABSTRACT

Base-pairing interactions mediate many intermolecular target recognition events. Even a single base-pair mismatch can cause a substantial difference in activity but how such changes influence the target search kinetics in vivo is unknown. Here, we use high-throughput sequencing and quantitative super-resolution imaging to probe the mutants of bacterial small RNA, SgrS, and their regulation of ptsG mRNA target. Mutations that disrupt binding of a chaperone protein, Hfq, and are distal to the mRNA annealing region still decrease the rate of target association, kon, and increase the dissociation rate, koff, showing that Hfq directly facilitates sRNA-mRNA annealing in vivo. Single base-pair mismatches in the annealing region reduce kon by 24-31% and increase koff by 14-25%, extending the time it takes to find and destroy the target by about a third. The effects of disrupting contiguous base-pairing are much more modest than that expected from thermodynamics, suggesting that Hfq buffers base-pair disruptions.


Subject(s)
Base Pairing/genetics , RNA Stability , RNA, Bacterial/genetics , Base Sequence , Escherichia coli/genetics , Gene Dosage , Genes, Reporter , Imaging, Three-Dimensional , Kinetics , Mutation/genetics , Nucleotides/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors
9.
Mol Microbiol ; 114(3): 391-408, 2020 09.
Article in English | MEDLINE | ID: mdl-32291821

ABSTRACT

Many bacterial small RNAs (sRNAs) efficiently inhibit translation of target mRNAs by forming a duplex that sequesters the Shine-Dalgarno (SD) sequence or start codon and prevents formation of the translation initiation complex. There are a growing number of examples of sRNA-mRNA binding interactions distant from the SD region, but how these mediate translational regulation remains unclear. Our previous work in Escherichia coli and Salmonella identified a mechanism of translational repression of manY mRNA by the sRNA SgrS through a binding interaction upstream of the manY SD. Here, we report that SgrS forms a duplex with a uridine-rich translation-enhancing element in the manY 5' untranslated region. Notably, we show that the enhancer is ribosome-dependent and that the small ribosomal subunit protein S1 interacts with the enhancer to promote translation of manY. In collaboration with the chaperone protein Hfq, SgrS interferes with the interaction between the translation enhancer and ribosomal protein S1 to repress translation of manY mRNA. Since bacterial translation is often modulated by enhancer-like elements upstream of the SD, sRNA-mediated enhancer silencing could be a common mode of gene regulation.


Subject(s)
Enhancer Elements, Genetic , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Host Factor 1 Protein/genetics , Peptide Chain Initiation, Translational , RNA, Small Untranslated/genetics , Ribosomal Proteins/physiology , 5' Untranslated Regions/genetics , Base Pairing , Binding Sites , Gene Expression Regulation, Bacterial , Protein Biosynthesis , RNA Interference , RNA, Bacterial/genetics , Ribosomes/physiology
10.
Front Mol Biosci ; 7: 593826, 2020.
Article in English | MEDLINE | ID: mdl-33425989

ABSTRACT

Small RNAs (sRNAs) play a crucial role in the regulation of bacterial gene expression by silencing the translation of target mRNAs. SgrS is an sRNA that relieves glucose-phosphate stress, or "sugar shock" in E. coli. The power of single cell measurements is their ability to obtain population level statistics that illustrate cell-to-cell variation. Here, we utilize single molecule super-resolution microscopy in single E. coli cells coupled with stochastic modeling to analyze glucose-phosphate stress regulation by SgrS. We present a kinetic model that captures the combined effects of transcriptional regulation, gene replication and chaperone mediated RNA silencing in the SgrS regulatory network. This more complete kinetic description, simulated stochastically, recapitulates experimentally observed cellular heterogeneity and characterizes the binding of SgrS to the chaperone protein Hfq as a slow process that not only stabilizes SgrS but also may be critical in restructuring the sRNA to facilitate association with its target ptsG mRNA.

11.
J Bacteriol ; 201(23)2019 12 01.
Article in English | MEDLINE | ID: mdl-31527115

ABSTRACT

Bacterial genomes harbor cryptic prophages that have lost genes required for induction, excision from host chromosomes, or production of phage progeny. Escherichia coli K-12 strains contain a cryptic prophage, Qin, that encodes a small RNA, DicF, and a small protein, DicB, that have been implicated in control of bacterial metabolism and cell division. Since DicB and DicF are encoded in the Qin immunity region, we tested whether these gene products could protect the E. coli host from bacteriophage infection. Transient expression of the dicBF operon yielded cells that were ∼100-fold more resistant to infection by λ phage than control cells, and the phenotype was DicB dependent. DicB specifically inhibited infection by λ and other phages that use ManYZ membrane proteins for cytoplasmic entry of phage DNA. In addition to blocking ManYZ-dependent phage infection, DicB also inhibited the canonical sugar transport activity of ManYZ. Previous studies demonstrated that DicB interacts with MinC, an FtsZ polymerization inhibitor, causing MinC localization to midcell and preventing Z ring formation and cell division. In strains producing mutant MinC proteins that do not interact with DicB, both DicB-dependent phenotypes involving ManYZ were lost. These results suggest that DicB is a pleiotropic regulator of bacterial physiology and cell division and that these effects are mediated by a key molecular interaction with the cell division protein MinC.IMPORTANCE Temperate bacteriophages can integrate their genomes into the bacterial host chromosome and exist as prophages whose gene products play key roles in bacterial fitness and interactions with eukaryotic host organisms. Most bacterial chromosomes contain "cryptic" prophages that have lost genes required for production of phage progeny but retain genes of unknown function that may be important for regulating bacterial host physiology. This study provides such an example, where a cryptic-prophage-encoded product can perform multiple roles in the bacterial host and influence processes, including metabolism, cell division, and susceptibility to phage infection. Further functional characterization of cryptic-prophage-encoded functions will shed new light on host-phage interactions and their cellular physiological implications.


Subject(s)
Bacteriophage lambda/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Membrane Proteins/genetics , Microbial Interactions/genetics , Prophages/genetics , Viral Proteins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriophage lambda/metabolism , Cell Division , Escherichia coli/growth & development , Escherichia coli/metabolism , Escherichia coli/virology , Escherichia coli Proteins/metabolism , Gene Expression Regulation , Membrane Proteins/metabolism , Operon , Phenotype , Prophages/metabolism , Viral Proteins/metabolism
12.
J Bacteriol ; 201(19)2019 10 01.
Article in English | MEDLINE | ID: mdl-31308070

ABSTRACT

Altering membrane protein and lipid composition is an important strategy for maintaining membrane integrity during environmental stress. Many bacterial small RNAs (sRNAs) control membrane protein production, but sRNA-mediated regulation of membrane fatty acid composition is less well understood. The sRNA RydC was previously shown to stabilize cfa (cyclopropane fatty acid synthase) mRNA, resulting in higher levels of cyclopropane fatty acids in the cell membrane. Here, we report that additional sRNAs, ArrS and CpxQ, also directly regulate cfa posttranscriptionally. RydC and ArrS act through masking an RNase E cleavage site in the cfa mRNA 5' untranslated region (UTR), and both sRNAs posttranscriptionally activate cfa In contrast, CpxQ binds to a different site in the cfa mRNA 5' UTR and represses cfa expression. Alteration of membrane lipid composition is a key mechanism for bacteria to survive low-pH environments, and we show that cfa translation increases in an sRNA-dependent manner when cells are subjected to mild acid stress. This work suggests an important role for sRNAs in the acid stress response through regulation of cfa mRNA.IMPORTANCE Small RNAs (sRNAs) in bacteria are abundant and play important roles in posttranscriptional regulation of gene expression, particularly under stress conditions. Some mRNAs are targets for regulation by multiple sRNAs, each responding to different environmental signals. Uncovering the regulatory mechanisms governing sRNA-mRNA interactions and the relevant conditions for these interactions is an ongoing challenge. In this study, we discovered that multiple sRNAs control membrane lipid composition by regulating stability of a single mRNA target. The sRNA-dependent regulation occurred in response to changing pH and was important for cell viability under acid stress conditions. This work reveals yet another aspect of bacterial physiology controlled at the posttranscriptional level by sRNA regulators.


Subject(s)
Bacteria/genetics , Methyltransferases/genetics , RNA, Small Untranslated/genetics , 5' Untranslated Regions , Bacteria/enzymology , Cyclopropanes/metabolism , Fatty Acids/metabolism , Gene Expression Regulation, Bacterial , RNA Processing, Post-Transcriptional , RNA, Bacterial/genetics , RNA, Messenger/genetics
13.
Mol Microbiol ; 112(4): 1199-1218, 2019 10.
Article in English | MEDLINE | ID: mdl-31340077

ABSTRACT

Small RNA (sRNA) regulators promote efficient responses to stress, but the mechanisms for prioritizing target mRNA regulation remain poorly understood. This study examines mechanisms underlying hierarchical regulation by the sRNA SgrS, found in enteric bacteria and produced under conditions of metabolic stress. SgrS posttranscriptionally coordinates a nine-gene regulon to restore growth and homeostasis. An in vivo reporter system quantified SgrS-dependent regulation of target genes and established that SgrS exhibits a clear target preference. Regulation of some targets is efficient even at low SgrS levels, whereas higher SgrS concentrations are required to regulate other targets. In vivo and in vitro analyses revealed that RNA structure and the number and position of base pairing sites relative to the start of translation impact the efficiency of regulation of SgrS targets. The RNA chaperone Hfq uses distinct modes of binding to different SgrS mRNA targets, which differentially influences positive and negative regulation. The RNA degradosome plays a larger role in regulation of some SgrS targets compared to others. Collectively, our results suggest that sRNA selection of target mRNAs and regulatory hierarchy are influenced by several molecular features and that the combination of these features precisely tunes the efficiency of regulation of multi-target sRNA regulons.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Base Pairing , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/genetics , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Protein Biosynthesis , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , RNA, Small Untranslated/metabolism , Regulon
14.
J Bacteriol ; 201(19)2019 10 01.
Article in English | MEDLINE | ID: mdl-31262841

ABSTRACT

Salmonella enterica serovar Typhimurium induces inflammatory diarrhea and bacterial uptake into intestinal epithelial cells using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). HilA activates transcription of the SPI1 structural components and effector proteins. Expression of hilA is activated by HilD, HilC, and RtsA, which act in a complex feed-forward regulatory loop. Many environmental signals and other regulators are integrated into this regulatory loop, primarily via HilD. After the invasion of Salmonella into host intestinal epithelial cells or during systemic replication in macrophages, the SPI T3SS is no longer required or expressed. We have shown that the two-component regulatory system PhoPQ, required for intracellular survival, represses the SPI1 T3SS mostly by controlling the transcription of hilA and hilD Here we show that PinT, one of the PhoPQ-regulated small RNAs (sRNAs), contributes to this regulation by repressing hilA and rtsA translation. PinT base pairs with both the hilA and rtsA mRNAs, resulting in translational inhibition of hilA, but also induces degradation of the rts transcript. PinT also indirectly represses expression of FliZ, a posttranslational regulator of HilD, and directly represses translation of ssrB, encoding the primary regulator of the SPI2 T3SS. Our in vivo mouse competition assays support the concept that PinT controls a series of virulence genes at the posttranscriptional level in order to adapt Salmonella from the invasion stage to intracellular survival.IMPORTANCESalmonella is one of the most important food-borne pathogens, infecting over one million people in the United States every year. These bacteria use a needle-like device to interact with intestinal epithelial cells, leading to invasion of the cells and induction of inflammatory diarrhea. A complex regulatory network controls expression of the invasion system in response to numerous environmental signals. Here we explore the molecular mechanisms by which the small RNA PinT contributes to this regulation, facilitating inactivation of the system after invasion. PinT controls several important virulence systems in Salmonella, tuning the transition between different stages of infection.


Subject(s)
Bacterial Proteins/genetics , RNA, Small Untranslated/genetics , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/pathogenicity , Animals , Disease Models, Animal , Gene Expression Regulation, Bacterial , Mice , Protein Biosynthesis , RNA, Bacterial/genetics , Salmonella typhimurium/genetics , Trans-Activators/genetics
15.
mSphere ; 4(1)2019 01 30.
Article in English | MEDLINE | ID: mdl-30700509

ABSTRACT

Small RNAs (sRNAs) posttranscriptionally regulate mRNA targets, typically under conditions of environmental stress. Although hundreds of sRNAs have been discovered in diverse bacterial genomes, most sRNAs remain uncharacterized, even in model organisms. Identification of mRNA targets directly regulated by sRNAs is rate-limiting for sRNA functional characterization. To address this, we developed a computational pipeline that we named SPOT for sRNA target prediction organizing tool. SPOT incorporates existing computational tools to search for sRNA binding sites, allows filtering based on experimental data, and organizes the results into a standardized report. SPOT sensitivity (number of correctly predicted targets/number of total known targets) was equal to or exceeded any individual method when used on 12 characterized sRNAs. Using SPOT, we generated a set of target predictions for the sRNA RydC, which was previously shown to positively regulate cfa mRNA, encoding cyclopropane fatty acid synthase. SPOT identified cfa along with additional putative mRNA targets, which we then tested experimentally. Our results demonstrated that in addition to cfa mRNA, RydC also regulates trpE and pheA mRNAs, which encode aromatic amino acid biosynthesis enzymes. Our results suggest that SPOT can facilitate elucidation of sRNA target regulons to expand our understanding of the many regulatory roles played by bacterial sRNAs.IMPORTANCE Small RNAs (sRNAs) regulate gene expression in diverse bacteria by interacting with mRNAs to change their structure, stability, or translation. Hundreds of sRNAs have been identified in bacteria, but characterization of their regulatory functions is limited by difficulty with sensitive and accurate identification of mRNA targets. Thus, new robust methods of bacterial sRNA target identification are in demand. Here, we describe our small RNA target prediction organizing tool (SPOT), which streamlines the process of sRNA target prediction by providing a single pipeline that combines available computational prediction tools with customizable results filtering based on experimental data. SPOT allows the user to rapidly produce a prioritized list of predicted sRNA-target mRNA interactions that serves as a basis for further experimental characterization. This tool will facilitate elucidation of sRNA regulons in bacteria, allowing new discoveries regarding the roles of sRNAs in bacterial stress responses and metabolic regulation.


Subject(s)
Bacteria/genetics , Computational Biology/methods , Gene Expression Regulation, Bacterial , Genes, Bacterial , RNA, Bacterial/genetics , RNA, Messenger/genetics , RNA, Small Untranslated/genetics , Binding Sites , Genetics, Microbial/methods
16.
Mol Microbiol ; 111(3): 570-587, 2019 03.
Article in English | MEDLINE | ID: mdl-30484918

ABSTRACT

Salmonella Typhimurium induces inflammatory diarrhea and uptake into intestinal epithelial cells using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). Three AraC-like regulators, HilD, HilC and RtsA, form a feed-forward regulatory loop that activates transcription of hilA, encoding the activator of the T3SS structural genes. Many environmental signals and regulatory systems are integrated into this circuit to precisely regulate SPI1 expression. A subset of these regulatory factors affects translation of hilD, but the mechanisms are poorly understood. Here, we identified two sRNAs, FnrS and ArcZ, which repress hilD translation, leading to decreased production of HilA. FnrS and ArcZ are oppositely regulated in response to oxygen, one of the key environmental signals affecting expression of SPI1. Mutational analysis demonstrates that FnrS and ArcZ bind to the hilD mRNA 5' UTR, resulting in translational repression. Deletion of fnrS led to increased HilD production under low-aeration conditions, whereas deletion of arcZ abolished the regulatory effect on hilD translation aerobically. The fnrS arcZ double mutant has phenotypes in a mouse oral infection model consistent with increased expression of SPI1. Together, these results suggest that coordinated regulation by these two sRNAs maximizes HilD production at an intermediate level of oxygen.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Gene Expression , Oxygen/metabolism , RNA, Small Untranslated/metabolism , Salmonella typhimurium/drug effects , Transcription Factors/metabolism , Type III Secretion Systems/biosynthesis , 5' Untranslated Regions , Animals , Bacterial Proteins/genetics , DNA Mutational Analysis , Gene Deletion , Gene Regulatory Networks , Mice , Nucleic Acid Hybridization , RNA, Messenger/metabolism , RNA, Small Untranslated/genetics , Salmonella typhimurium/genetics , Transcription Factors/genetics , Type III Secretion Systems/genetics
17.
Microbiol Spectr ; 6(5)2018 09.
Article in English | MEDLINE | ID: mdl-30191807

ABSTRACT

Bacteria are known to use RNA, either as mRNAs encoding proteins or as noncoding small RNAs (sRNAs), to regulate numerous biological processes. However, a few sRNAs have two functions: they act as base-pairing RNAs and encode a small protein with additional regulatory functions. Thus, these so called "dual-function" sRNAs can serve as both a riboregulator and an mRNA. In some cases, these two functions can act independently within the same pathway, while in other cases, the base-pairing function and protein function act in different pathways. Here, we discuss the five known dual-function sRNAs-SgrS from enteric species, RNAIII and Psm-mec from Staphylococcus aureus, Pel RNA from Streptococcus pyogenes, and SR1 from Bacillus subtilis-and review their mechanisms of action and roles in regulating diverse biological processes. We also discuss the prospect of finding additional dual-function sRNAs and future challenges in studying the overlap and competition between the functions.


Subject(s)
Gene Expression Regulation, Bacterial , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Bacillus subtilis/genetics , Bacteria/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Pairing/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Staphylococcus aureus/genetics , Streptococcus pyogenes/genetics
18.
Nucleic Acids Res ; 46(5): 2585-2599, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29294046

ABSTRACT

In bacteria, the canonical mechanism of translational repression by small RNAs (sRNAs) involves sRNA-mRNA base pairing that occludes the ribosome binding site (RBS), directly preventing translation. In this mechanism, the sRNA is the direct regulator, while the RNA chaperone Hfq plays a supporting role by stabilizing the sRNA. There are a few examples where the sRNA does not directly interfere with ribosome binding, yet translation of the target mRNA is still inhibited. Mechanistically, this non-canonical regulation by sRNAs is poorly understood. Our previous work demonstrated repression of the mannose transporter manX mRNA by the sRNA SgrS, but the regulatory mechanism was unknown. Here, we report that manX translation is controlled by a molecular role-reversal mechanism where Hfq, not the sRNA, is the direct repressor. Hfq binding adjacent to the manX RBS is required for sRNA-mediated translational repression. Translation of manX is also regulated by another sRNA, DicF, via the same non-canonical Hfq-dependent mechanism. Our results suggest that the sRNAs recruit Hfq to its binding site or stabilize the mRNA-Hfq complex. This work adds to the growing number of examples of diverse mechanisms of translational regulation by sRNAs in bacteria.


Subject(s)
Gene Expression Regulation, Bacterial , Host Factor 1 Protein/metabolism , Protein Biosynthesis , RNA, Bacterial/metabolism , RNA, Small Untranslated/metabolism , 5' Untranslated Regions , Binding Sites , Host Factor 1 Protein/physiology , Membrane Transport Proteins/genetics , Peptide Chain Initiation, Translational , RNA, Messenger/metabolism , Ribosomes/metabolism
19.
J Bacteriol ; 199(11)2017 06 01.
Article in English | MEDLINE | ID: mdl-28289085

ABSTRACT

The bacterial small RNA (sRNA) SgrS has been a fruitful model for discovery of novel RNA-based regulatory mechanisms and new facets of bacterial physiology and metabolism. SgrS is one of only a few characterized dual-function sRNAs. SgrS can control gene expression posttranscriptionally via sRNA-mRNA base-pairing interactions. Its second function is coding for the small protein SgrT. Previous work demonstrated that both functions contribute to relief of growth inhibition caused by glucose-phosphate stress, a condition characterized by disrupted glycolytic flux and accumulation of sugar phosphates. The base-pairing activity of SgrS has been the subject of numerous studies, but the activity of SgrT is less well characterized. Here, we provide evidence that SgrT acts to specifically inhibit the transport activity of the major glucose permease PtsG. Superresolution microscopy demonstrated that SgrT localizes to the cell membrane in a PtsG-dependent manner. Mutational analysis determined that residues in the N-terminal domain of PtsG are important for conferring sensitivity to SgrT-mediated inhibition of transport activity. Growth assays support a model in which SgrT-mediated inhibition of PtsG transport activity reduces accumulation of nonmetabolizable sugar phosphates and promotes utilization of alternative carbon sources by modulating carbon catabolite repression. The results of this study expand our understanding of a basic and well-studied biological problem, namely, how cells coordinate carbohydrate transport and metabolism. Further, this work highlights the complex activities that can be carried out by sRNAs and small proteins in bacteria.IMPORTANCE Sequencing, annotation and investigation of hundreds of bacterial genomes have identified vast numbers of small RNAs and small proteins, the majority of which have no known function. In this study, we explore the function of a small protein that acts in tandem with a well-characterized small RNA during metabolic stress to help bacterial cells maintain balanced metabolism and continue growing. Our results indicate that this protein acts on the glucose transport system, inhibiting its activity under stress conditions in order to allow cells to utilize alternative carbon sources. This work sheds new light on a key biological problem: how cells coordinate carbohydrate transport and metabolism. The study also expands our understanding of the functional capacities of small proteins.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Glucose/metabolism , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Biological Transport , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli Proteins/genetics , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Promoter Regions, Genetic
20.
mSystems ; 1(1)2016.
Article in English | MEDLINE | ID: mdl-27822514

ABSTRACT

Hundreds of small RNAs (sRNAs) have been identified in diverse bacterial species, and while the functions of most remain unknown, some regulate key processes, particularly stress responses. The sRNA DicF was identified over 25 years ago as an inhibitor of cell division but since then has remained uncharacterized. DicF consists of 53 nucleotides and is encoded by a gene carried on a prophage (Qin) in the genomes of many Escherichia coli strains. We demonstrated that DicF inhibits cell division via direct base pairing with ftsZ mRNA to repress translation and prevent new synthesis of the bacterial tubulin homolog FtsZ. Systems analysis using computational and experimental methods identified additional mRNA targets of DicF: xylR and pykA mRNAs, encoding the xylose uptake and catabolism regulator and pyruvate kinase, respectively. Genetic analyses showed that DicF directly base pairs with and represses translation of these targets. Phenotypes of cells expressing DicF variants demonstrated that DicF-associated growth inhibition is not solely due to repression of ftsZ, indicating that the physiological consequences of DicF-mediated regulation extend beyond effects on cell division caused by reduced FtsZ synthesis. IMPORTANCE sRNAs are ubiquitous and versatile regulators of bacterial gene expression. A number of well-characterized examples in E. coli are highly conserved and present in the E. coli core genome. In contrast, the sRNA DicF (identified over 20 years ago but remaining poorly characterized) is encoded by a gene carried on a defective prophage element in many E. coli genomes. Here, we characterize DicF in order to better understand how horizontally acquired sRNA regulators impact bacterial gene expression and physiology. Our data confirm the long-hypothesized DicF-mediated regulation of ftsZ, encoding the bacterial tubulin homolog required for cell division. We further uncover DicF-mediated posttranscriptional control of metabolic gene expression. Ectopic production of DicF is highly toxic to E. coli cells, but the toxicity is not attributable to DicF regulation of ftsZ. Further work is needed to reveal the biological roles of and benefits for the host conferred by DicF and other products encoded by defective prophages.

SELECTION OF CITATIONS
SEARCH DETAIL
...