Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 274(30): 21375-86, 1999 Jul 23.
Article in English | MEDLINE | ID: mdl-10409699

ABSTRACT

We have isolated a full-length cDNA clone encoding a human alpha1, 2-mannosidase that catalyzes the first mannose trimming step in the processing of mammalian Asn-linked oligosaccharides. This enzyme has been proposed to regulate the timing of quality control glycoprotein degradation in the endoplasmic reticulum (ER) of eukaryotic cells. Human expressed sequence tag clones were identified by sequence similarity to mammalian and yeast oligosaccharide-processing mannosidases, and the full-length coding region of the putative mannosidase homolog was isolated by a combination of 5'-rapid amplification of cDNA ends and direct polymerase chain reaction from human placental cDNA. The open reading frame predicted a 663-amino acid type II transmembrane polypeptide with a short cytoplasmic tail (47 amino acids), a single transmembrane domain (22 amino acids), and a large COOH-terminal catalytic domain (594 amino acids). Northern blots detected a transcript of approximately 2.8 kilobase pairs that was ubiquitously expressed in human tissues. Expression of an epitope-tagged full-length form of the human mannosidase homolog in normal rat kidney cells resulted in an ER pattern of localization. When a recombinant protein, consisting of protein A fused to the COOH-terminal luminal domain of the human mannosidase homolog, was expressed in COS cells, the fusion protein was found to cleave only a single alpha1,2-mannose residue from Man(9)GlcNAc(2) to produce a unique Man(8)GlcNAc(2) isomer (Man8B). The mannose cleavage reaction required divalent cations as indicated by inhibition with EDTA or EGTA and reversal of the inhibition by the addition of Ca(2+). The enzyme was also sensitive to inhibition by deoxymannojirimycin and kifunensine, but not swainsonine. The results on the localization, substrate specificity, and inhibitor profiles indicate that the cDNA reported here encodes an enzyme previously designated ER mannosidase I. Enzyme reactions using a combination of human ER mannosidase I and recombinant Golgi mannosidase IA indicated that that these two enzymes are complementary in their cleavage of Man(9)GlcNAc(2) oligosaccharides to Man(5)GlcNAc(2).


Subject(s)
Endoplasmic Reticulum/enzymology , Mannose/metabolism , Mannosidases/genetics , Mannosidases/metabolism , Amino Acid Sequence , Animals , Base Sequence , Catalysis , DNA, Complementary/genetics , DNA, Complementary/metabolism , Humans , Molecular Sequence Data , Oligosaccharides/biosynthesis , Open Reading Frames/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , Rats , Sequence Alignment
2.
Glycobiology ; 8(12): 1183-94, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9858640

ABSTRACT

The acid alpha-mannosidase of Trypanosoma cruzi is a broad-specificity hydrolase involved in the catabolism of glycoconjugates, presumably in the digestive vacuole. We have cloned the alpha-mannosidase gene from a T.cruzi epimastigote genomic library. The alpha-mannosidase gene was determined to be single copy by Southern analysis, and similar sequences were not detected in genomic digests of either Trypanosoma brucei or Leishmania donovani. The coding region was subcloned into the Pichia pastoris expression vector pPICZ, and alpha-mannosidase activity was detected in the medium of induced cultures. The recombinant alpha-mannosidase demonstrated a pH optimum, inhibition by swainsonine, Km, and substrate specificity consistent with the characteristics of the alpha-mannosidase previously purified from T.cruzi epimastigotes. The recombinant enzyme was purified 103-fold from the culture medium of Pichia pastoris and had a native molecular mass of 359 kDa by gel filtration. A combination of SDS-PAGE, deglycosylation with endo H, and NH2-terminal sequencing indicates that the enzyme is originally synthesized as a homodimeric polypeptide that is subsequently cleaved to form a heterotetramer composed of 57 and 46 kDa subunits. A polyclonal antibody raised to the recombinant enzyme was shown to immunoprecipitate the alpha-mannosidase from T.cruzi cell extracts and will be used in future immunolocalization studies.


Subject(s)
Mannosidases/genetics , Trypanosoma cruzi/enzymology , Amino Acid Sequence , Animals , Base Sequence , Carbohydrate Sequence , Cloning, Molecular , Enzyme Inhibitors/pharmacology , Hydrogen-Ion Concentration , Kinetics , Mannosidases/metabolism , Molecular Sequence Data , Oligosaccharides/metabolism , Protein Processing, Post-Translational/physiology , RNA, Messenger/genetics , Recombinant Proteins/genetics , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Substrate Specificity , Swainsonine/pharmacology , alpha-Mannosidase
SELECTION OF CITATIONS
SEARCH DETAIL
...