Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nat Commun ; 15(1): 3384, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649760

ABSTRACT

Polygenic variation unrelated to disease contributes to interindividual variation in baseline white blood cell (WBC) counts, but its clinical significance is uncharacterized. We investigated the clinical consequences of a genetic predisposition toward lower WBC counts among 89,559 biobank participants from tertiary care centers using a polygenic score for WBC count (PGSWBC) comprising single nucleotide polymorphisms not associated with disease. A predisposition to lower WBC counts was associated with a decreased risk of identifying pathology on a bone marrow biopsy performed for a low WBC count (odds-ratio = 0.55 per standard deviation increase in PGSWBC [95%CI, 0.30-0.94], p = 0.04), an increased risk of leukopenia (a low WBC count) when treated with a chemotherapeutic (n = 1724, hazard ratio [HR] = 0.78 [0.69-0.88], p = 4.0 × 10-5) or immunosuppressant (n = 354, HR = 0.61 [0.38-0.99], p = 0.04). A predisposition to benign lower WBC counts was associated with an increased risk of discontinuing azathioprine treatment (n = 1,466, HR = 0.62 [0.44-0.87], p = 0.006). Collectively, these findings suggest that there are genetically predisposed individuals who are susceptible to escalations or alterations in clinical care that may be harmful or of little benefit.


Subject(s)
Genetic Predisposition to Disease , Leukopenia , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Humans , Leukocyte Count , Male , Female , Leukopenia/genetics , Leukopenia/blood , Middle Aged , Aged , Adult , Immunosuppressive Agents/therapeutic use
2.
Nature ; 627(8003): 347-357, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38374256

ABSTRACT

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.


Subject(s)
Diabetes Mellitus, Type 2 , Disease Progression , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Adipocytes/metabolism , Chromatin/genetics , Chromatin/metabolism , Coronary Artery Disease/complications , Coronary Artery Disease/genetics , Diabetes Mellitus, Type 2/classification , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/physiopathology , Diabetic Nephropathies/complications , Diabetic Nephropathies/genetics , Endothelial Cells/metabolism , Enteroendocrine Cells , Epigenomics , Genetic Predisposition to Disease/genetics , Islets of Langerhans/metabolism , Multifactorial Inheritance/genetics , Peripheral Arterial Disease/complications , Peripheral Arterial Disease/genetics , Single-Cell Analysis
3.
medRxiv ; 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37662324

ABSTRACT

Polygenic variation unrelated to disease contributes to interindividual variation in baseline white blood cell (WBC) counts, but its clinical significance is undefined. We investigated the clinical consequences of a genetic predisposition toward lower WBC counts among 89,559 biobank participants from tertiary care centers using a polygenic score for WBC count (PGSWBC) comprising single nucleotide polymorphisms not associated with disease. A predisposition to lower WBC counts was associated with a decreased risk of identifying pathology on a bone marrow biopsy performed for a low WBC count (odds-ratio=0.55 per standard deviation increase in PGSWBC [95%CI, 0.30 - 0.94], p=0.04), an increased risk of leukopenia (a low WBC count) when treated with a chemotherapeutic (n=1,724, hazard ratio [HR]=0.78 [0.69 - 0.88], p=4.0×10-5) or immunosuppressant (n=354, HR=0.61 [0.38 - 0.99], p=0.04). A predisposition to benign lower WBC counts was associated with an increased risk of discontinuing azathioprine treatment (n=1,466, HR=0.62 [0.44 - 0.87], p=0.006). Collectively, these findings suggest that a WBC count polygenic score identifies individuals who are susceptible to escalations or alterations in clinical care that may be harmful or of little benefit.

4.
Clin Pharmacol Ther ; 114(2): 356-361, 2023 08.
Article in English | MEDLINE | ID: mdl-37163252

ABSTRACT

Using pharmacogenetics (PGx) to inform clinical decision making can benefit patients but clinical use of PGx testing has been limited. Existing genetics data obtained in the course of research could be used to identify patients who are suspected, but have not yet been confirmed, to carry clinically actionable genotypes, in whom confirmatory genetic testing could be conducted for highly efficient PGx implementation. Herein, we demonstrate that it is regulatorily and technically feasible to implement PGx by identifying suspected carriers of actionable genotypes within an institutional genetics data repository and conduct confirmatory PGx testing immediately prior to that patient receiving the PGx-relevant drug, using a case study of DPYD testing prior to fluoropyrimidine chemotherapy. In 2 years since launching this program, ~ 3,000 suspected DPYD carriers have been passively monitored and one confirmed DPYD carrier was prevented from receiving unacceptably toxic fluoropyrimidine treatment, for minimal cost and effort. Now that we have demonstrated the feasibility of this strategy, we plan to transition to PGx panel testing and expand implementation to other genes and drugs for which the evidence of clinical benefit of PGx-informed treatment is high but PGx testing is not generally conducted. This highly efficient implementation process will maximize the clinical benefits of testing and could be explored at other institutions that have research-only genetic data repositories to expand the number of patients who benefit from PGx-informed treatment while we continue to work toward wide-scale adoption of PGx testing and implementation.


Subject(s)
Dihydrouracil Dehydrogenase (NADP) , Heterocyclic Compounds , Pharmacogenetics , Humans , Antimetabolites , Genetic Testing , Genotype , Dihydrouracil Dehydrogenase (NADP)/drug effects , Dihydrouracil Dehydrogenase (NADP)/genetics
5.
medRxiv ; 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37034649

ABSTRACT

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes. To characterise the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study (GWAS) data from 2,535,601 individuals (39.7% non-European ancestry), including 428,452 T2D cases. We identify 1,289 independent association signals at genome-wide significance (P<5×10-8) that map to 611 loci, of which 145 loci are previously unreported. We define eight non-overlapping clusters of T2D signals characterised by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial, and enteroendocrine cells. We build cluster-specific partitioned genetic risk scores (GRS) in an additional 137,559 individuals of diverse ancestry, including 10,159 T2D cases, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned GRS are more strongly associated with coronary artery disease and end-stage diabetic nephropathy than an overall T2D GRS across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings demonstrate the value of integrating multi-ancestry GWAS with single-cell epigenomics to disentangle the aetiological heterogeneity driving the development and progression of T2D, which may offer a route to optimise global access to genetically-informed diabetes care.

6.
Cell Genom ; 3(2): 100257, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36819667

ABSTRACT

Biobanks of linked clinical patient histories and biological samples are an efficient strategy to generate large cohorts for modern genetics research. Biobank recruitment varies by factors such as geographic catchment and sampling strategy, which affect biobank demographics and research utility. Here, we describe the Michigan Genomics Initiative (MGI), a single-health-system biobank currently consisting of >91,000 participants recruited primarily during surgical encounters at Michigan Medicine. The surgical enrollment results in a biobank enriched for many diseases and ideally suited for a disease genetics cohort. Compared with the much larger population-based UK Biobank, MGI has higher prevalence for nearly all diagnosis-code-based phenotypes and larger absolute case counts for many phenotypes. Genome-wide association study (GWAS) results replicate known findings, thereby validating the genetic and clinical data. Our results illustrate that opportunistic biobank sampling within single health systems provides a unique and complementary resource for exploring the genetics of complex diseases.

7.
Support Care Cancer ; 30(9): 7355-7363, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35606478

ABSTRACT

PURPOSE: Cyclophosphamide is a commonly used cancer agent that is metabolically activated by polymorphic enzymes. This study aims to investigate the association between predicted activity of candidate pharmacogenes with severe toxicity during cyclophosphamide treatment. METHODS: Genome-wide genetic data was collected from an institutional genetic data repository for CYP2B6, CYP3A4, CYP2C9, CYP2C19, GSTA1, GSTP1, ALDH1A1, ALDH3A1, ABCC1, ABCB1, and ERCC1. Treatment and toxicity data were retrospectively collected from the patient's medical record. The a priori selected primary hypothesis was that patients who have CYP2B6 reduced metabolizer activity (poor or intermediate (PM/IM) vs. normal (NM) metabolizer) have lower risk of severe toxicity or cyclophosphamide treatment modification due to toxicity. RESULTS: In the primary analysis of 510 cyclophosphamide-treated patients with available genetic data, there was no difference in the odds of severe toxicity or treatment modification due to toxicity in CYP2B6 PM/IM vs. NM (odds ratio = 0.97, 95% Confidence Interval: 0.62-1.50, p = 0.88). In an exploratory, statistically uncorrected secondary analysis, carriers of the ALDH1A1 rs8187996 variant had a lower risk of the primary toxicity endpoint compared with wild-type homozygous patients (odds ratio = 0.31, 95% Confidence Interval: 0.09-0.78, p = 0.028). None of the other tested phenotypes or genotypes was associated with the primary or secondary endpoints in unadjusted analysis (all p > 0.05). CONCLUSION: The finding that patients who carry ALDH1A1 rs8187996 may have a lower risk of cyclophosphamide toxicity than wild-type patients contradicts a prior finding for this variant and should be viewed with skepticism. We found weak evidence that any of these candidate pharmacogenetic predictors of cyclophosphamide toxicity may be useful to personalize cyclophosphamide dosing to optimize therapeutic outcomes in patients with cancer.


Subject(s)
Aldehyde Dehydrogenase 1 Family , Cytochrome P-450 CYP2B6 , Neoplasms , Pharmacogenetics , Retinal Dehydrogenase , Aldehyde Dehydrogenase 1 Family/genetics , Cyclophosphamide , Cytochrome P-450 CYP2B6/genetics , Genotype , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Retinal Dehydrogenase/genetics , Retrospective Studies
8.
Inflamm Bowel Dis ; 28(11): 1667-1676, 2022 11 02.
Article in English | MEDLINE | ID: mdl-35018451

ABSTRACT

BACKGROUND: Inflammatory bowel disease is associated with an increased risk of skin cancer. The aims of this study were to determine whether IBD susceptibility variants are also associated with skin cancer susceptibility and if such risk is augmented by use of immune-suppressive therapy. METHODS: The discovery cohort included participants in the UK Biobank. The validation cohort included participants in the Michigan Genomics Initiative. The primary outcome of interest was skin cancer, subgrouped into nonmelanoma skin cancers (NMSC) and melanoma skin cancers (MSC). Multivariable logistic regression with matched controls (3 controls:1 case) was performed to identify genomic predictors of skin malignancy in the discovery cohort. Variants with P < .05 were tested for replication in the validation cohort. Validated Single nucleotide polymorphisms were then evaluated for effect modification by immune-suppressive medications. RESULTS: The discovery cohort included 10,247 cases of NMSC and 1883 cases of MSC. The validation cohort included 7334 cases of NMSC and 3304 cases of MSC. Twenty-nine variants were associated with risk of NMSC in the discovery cohort, of which 5 replicated in the validation cohort (increased risk, rs7773324-A [DUSP22; IRF4], rs2476601-G [PTPN22], rs1847472-C [BACH2], rs72810983-A [CPEB4]; decreased risk, rs6088765-G [PROCR; MMP24]). Twelve variants were associated with risk of MSC in the discovery cohort, of which 4 were replicated in the validation cohort (increased risk, rs61839660-T [IL2RA]; decreased risk, rs17391694-C [GIPC2; MGC27382], rs6088765-G [PROCR; MMP24], and rs1728785-C [ZFP90]). No effect modification was observed. CONCLUSIONS: The results of this study highlight shared genetic susceptibility across IBD and skin cancer, with increased risk of NMSC in those who carry risk variants in IRF4, PTPN22, CPEB4, and BACH2 and increased risk of MSC in those who carry a risk variant in IL2RA.


Subject(s)
Inflammatory Bowel Diseases , Skin Neoplasms , Humans , Basic-Leucine Zipper Transcription Factors , Endothelial Protein C Receptor , Inflammatory Bowel Diseases/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 22 , Risk Factors , RNA-Binding Proteins , Skin Neoplasms/genetics , Melanoma, Cutaneous Malignant
9.
Genetics ; 217(4)2021 04 15.
Article in English | MEDLINE | ID: mdl-33686438

ABSTRACT

Genotype imputation is an indispensable step in human genetic studies. Large reference panels with deeply sequenced genomes now allow interrogating variants with minor allele frequency < 1% without sequencing. Although it is critical to consider limits of this approach, imputation methods for rare variants have only done so empirically; the theoretical basis of their imputation accuracy has not been explored. To provide theoretical consideration of imputation accuracy under the current imputation framework, we develop a coalescent model of imputing rare variants, leveraging the joint genealogy of the sample to be imputed and reference individuals. We show that broadly used imputation algorithms include model misspecifications about this joint genealogy that limit the ability to correctly impute rare variants. We develop closed-form solutions for the probability distribution of this joint genealogy and quantify the inevitable error rate resulting from the model misspecification across a range of allele frequencies and reference sample sizes. We show that the probability of a falsely imputed minor allele decreases with reference sample size, but the proportion of falsely imputed minor alleles mostly depends on the allele count in the reference sample. We summarize the impact of this error on genotype imputation on association tests by calculating the r2 between imputed and true genotype and show that even when modeling other sources of error, the impact of the model misspecification has a significant impact on the r2 of rare variants. To evaluate these predictions in practice, we compare the imputation of the same dataset across imputation panels of different sizes. Although this empirical imputation accuracy is substantially lower than our theoretical prediction, modeling misspecification seems to further decrease imputation accuracy for variants with low allele counts in the reference. These results provide a framework for developing new imputation algorithms and for interpreting rare variant association analyses.


Subject(s)
Gene Frequency , Genome, Human , Models, Genetic , Polymorphism, Genetic , Algorithms , Genetics, Population/methods , Humans
10.
Cytokine ; 123: 154762, 2019 11.
Article in English | MEDLINE | ID: mdl-31254927

ABSTRACT

Pancreatic cancer is an aggressive disease with a poor prognosis for which current standard chemotherapeutic treatments offer little survival benefit. Receptor tyrosine kinases (RTK)s have garnered interest as therapeutic targets to augment or replace standard chemotherapeutic treatments because of their ability to promote cell growth, migration, and survival in various cancers. Met and Ron, which are homologous RTKs activated by the ligands hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP), respectively, are over-activated and display synergistic malignant effects in several cancers. Despite the homology between Met and Ron, studies that have directly compared the functional outcomes of these systems in any context are limited. To address this, we sought to determine if the HGF/Met and MSP/Ron systems produce overlapping or divergent contributions towards a malignant phenotype by performing a characterization of MSP and HGF driven signaling, behavioral, and transcriptomic responses in a primary pancreatic adenocarcinoma (PAAD) cell line in vitro. The impact of dual Met and Ron expression signatures on the overall survival of PAAD patients was also assessed. We found HGF and MSP both encouraged PAAD cell migration, but only HGF increased proliferation. RNA sequencing revealed that the transcriptomic effects of MSP mimicked a narrow subset of the responses induced by HGF. Analysis of clinical data indicated that the strong prognostic value of Met expression in primary PAAD does not appear to be modulated by Ron expression. The relatively reduced magnitude of MSP-dependent effects on primary PAAD cells are consistent with the limited prognostic value of Ron expression in this cancer when compared to Met. Although HGF and MSP produced a differing breadth of responses in vitro, overlapping pro-cancer signaling, behavioral, and transcriptional effects still point to a potential role for the MSP/Ron system in pancreatic cancer.


Subject(s)
Adenocarcinoma/metabolism , Hepatocyte Growth Factor/metabolism , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Hepatocyte Growth Factor/genetics , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-met/genetics , Receptor Protein-Tyrosine Kinases/genetics , Transcriptome , Pancreatic Neoplasms
11.
Anticancer Drugs ; 29(4): 295-306, 2018 04.
Article in English | MEDLINE | ID: mdl-29389804

ABSTRACT

Pancreatic cancer is a leading cause of cancer deaths in the USA and is characterized by an exceptionally poor long-term survival rate compared with other major cancers. The hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP) growth factor systems are frequently over-activated in pancreatic cancer and significantly contribute to cancer progression, metastasis, and chemotherapeutic resistance. Small molecules homologous to the 'hinge' region of HGF, which participates in its dimerization and activation, had been developed and shown to bind HGF with high affinity, antagonize HGF's actions, and possess anticancer activity. Encouraged by sequence homology between HGF's hinge region and a similar sequence in MSP, our laboratory previously investigated and determined that these same antagonists could also block MSP-dependent cellular responses. Thus, the purpose of this study was to establish that the dual HGF/MSP antagonist Norleual could inhibit the prosurvival activity imparted by both HGF and MSP to pancreatic cancer cells in vitro, and to determine whether this effect translated into an improved chemotherapeutic impact for gemcitabine when delivered in combination in a human pancreatic cancer xenograft model. Our results demonstrate that Norleual does indeed suppress HGF's and MSP's prosurvival effects as well as sensitizing pancreatic cancer cells to gemcitabine in vitro. Most importantly, treatment with Norleual in combination with gemcitabine markedly inhibited in-vivo tumor growth beyond the suppression observed with gemcitabine alone. These results suggest that dual functional HGF/MSP antagonists like Norleual warrant further development and may offer an improved therapeutic outcome for pancreatic cancer patients.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Deoxycytidine/analogs & derivatives , Hepatocyte Growth Factor/antagonists & inhibitors , Oligopeptides/therapeutic use , Pancreatic Neoplasms/drug therapy , Proto-Oncogene Proteins/antagonists & inhibitors , Animals , Antimetabolites, Antineoplastic/pharmacology , Cell Line, Tumor , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Drug Synergism , Hepatocyte Growth Factor/metabolism , Humans , Male , Mice , Mice, Nude , Oligopeptides/pharmacology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/therapy , Proto-Oncogene Proteins/metabolism , Treatment Outcome , Xenograft Model Antitumor Assays , Gemcitabine
12.
Anticancer Drugs ; 27(8): 766-79, 2016 09.
Article in English | MEDLINE | ID: mdl-27314431

ABSTRACT

Pancreatic cancer is among the leading causes of cancer death in the USA, with limited effective treatment options. A major contributor toward the formation and persistence of pancreatic cancer is the dysregulation of the hepatocyte growth factor (HGF)/Met (HGF receptor) and the macrophage-stimulating protein (MSP)/Ron (MSP receptor) systems. These systems normally mediate a variety of cellular behaviors including proliferation, survival, and migration, but are often overactivated in pancreatic cancer and contribute toward cancer progression. Previous studies have shown that HGF must dimerize to activate Met. Small-molecule antagonists with homology to a 'hinge' region within the putative dimerization domain of HGF have been developed that bind to HGF and block dimerization, therefore inhibiting Met signaling. Because of the structural and sequence homology between MSP and HGF, we hypothesized that the inhibition of HGF by the hinge analogs may extend to MSP. The primary aim of this 'proof-of-concept' study was to determine whether hinge analogs could inhibit cellular responses to both HGF and MSP in pancreatic cancer cells. Our results showed that these compounds inhibited HGF and MSP activity. Hinge analog treatment resulted in decreased Met and Ron activation, and suppressed malignant cell behaviors including proliferation, migration, and invasion in pancreatic cancer cells in vitro. These results suggest that the hinge analogs represent a novel group of molecules that may offer a therapeutic approach for the treatment of pancreatic cancer and warrant further development and optimization.


Subject(s)
Antineoplastic Agents/pharmacology , Hepatocyte Growth Factor/chemistry , Pancreatic Neoplasms/drug therapy , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins/chemistry , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Cell Communication/drug effects , Cell Movement/drug effects , Hepatocyte Growth Factor/metabolism , Hepatocyte Growth Factor/pharmacology , Humans , Mice , Molecular Targeted Therapy , Oligopeptides/pharmacology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Peptides/pharmacology , Proto-Oncogene Proteins c-met/metabolism , Receptor Protein-Tyrosine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...