Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0301474, 2024.
Article in English | MEDLINE | ID: mdl-38564614

ABSTRACT

With the decline of bee populations worldwide, studies determining current wild bee distributions and diversity are increasingly important. Wild bee identification is often completed by experienced taxonomists or by genetic analysis. The current study was designed to compare two methods of identification including: (1) morphological identification by experienced taxonomists using images of field-collected wild bees and (2) genetic analysis of composite bee legs (multiple taxa) using metabarcoding. Bees were collected from conservation grasslands in eastern Iowa in summer 2019 and identified to the lowest taxonomic unit using both methods. Sanger sequencing of individual wild bee legs was used as a positive control for metabarcoding. Morphological identification of bees using images resulted in 36 unique taxa among 22 genera, and >80% of Bombus specimens were identified to species. Metabarcoding was limited to genus-level assignments among 18 genera but resolved some morphologically similar genera. Metabarcoding did not consistently detect all genera in the composite samples, including kleptoparasitic bees. Sanger sequencing showed similar presence or absence detection results as metabarcoding but provided species-level identifications for cryptic species (i.e., Lasioglossum). Genus-specific detections were more frequent with morphological identification than metabarcoding, but certain genera such as Ceratina and Halictus were identified equally well with metabarcoding and morphology. Genera with proportionately less tissue in a composite sample were less likely to be detected using metabarcoding. Image-based methods were limited by image quality and visible morphological features, while genetic methods were limited by databases, primers, and amplification at target loci. This study shows how an image-based identification method compares with genetic techniques, and how in combination, the methods provide valuable genus- and species-level information for wild bees while preserving tissue for other analyses. These methods could be improved and transferred to a field setting to advance our understanding of wild bee distributions and to expedite conservation research.


Subject(s)
DNA Barcoding, Taxonomic , Animals , Bees/genetics , Databases, Factual , Iowa , DNA Barcoding, Taxonomic/methods
2.
R Soc Open Sci ; 10(11): 231093, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38026041

ABSTRACT

Pollinator diversity and abundance are declining globally. Cropland agriculture and the corresponding use of agricultural pesticides may contribute to these declines, while increased pollinator habitat (flowering plants) can help mitigate them. Here we tested whether the relative effect of wildflower plantings on pollinator diversity and counts were modified by proportion of nearby agricultural land cover and pesticide exposure in 24 conserved grasslands in Iowa, USA. Compared with general grassland conservation practices, wildflower plantings led to only a 5% increase in pollinator diversity and no change in counts regardless of the proportion of cropland agriculture within a 1 km radius. Pollinator diversity increased earlier in the growing season and with per cent flower cover. Unexpectedly, neither insecticide nor total pesticide concentrations on above-ground passive samplers were related to pollinator diversity. However, pollinator community composition was most strongly related to date of sampling, total pesticide concentration, and forb or flower cover. Our results indicate very little difference in pollinator diversity between grassland conservation practices with and without wildflower plantings. Given the relatively high economic costs of wildflower plantings, our research provides initial evidence that investment in general grassland conservation may efficiently conserve pollinator diversity in temperate regions of intensive cropland agriculture.

3.
Sci Rep ; 8(1): 10045, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29968741

ABSTRACT

This is the first field study of its kind to combine radio telemetry, passive samplers, and pesticide accumulation in tissues to characterize the amphibian exposome as it relates to pesticides. Understanding how habitat drives exposure in individuals (i.e., their exposome), and how that relates to individual health is critical to managing species in an agricultural landscape where pesticide exposure is likely. We followed 72 northern leopard frogs (Lithobates pipiens) in two agricultural wetlands for insight into where and when individuals are at high risk of pesticide exposure. Novel passive sampling devices (PSDs) were deployed at sites where telemetered frogs were located, then moved to subsequent locations as frogs were radio-tracked. Pesticide concentration in PSDs varied by habitat and was greatest in agricultural fields where frogs were rarely found. Pesticide concentrations in frogs were greatest in spring when frogs were occupying wetlands compared to late summer when frogs occupied terrestrial habitats. Our results indicate that habitat and time of year influence exposure and accumulation of pesticides in amphibians. Our study illustrates the feasibility of quantifying the amphibian exposome to interpret the role of habitat use in pesticide accumulation in frogs to better manage amphibians in agricultural landscapes.


Subject(s)
Environmental Exposure/analysis , Pesticides/adverse effects , Pesticides/analysis , Agriculture , Animals , Ecosystem , Environmental Exposure/adverse effects , Rana pipiens , Seasons , Telemetry/methods , Water Pollutants, Chemical/analysis , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...