Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 328: 218-226, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28411148

ABSTRACT

ANK3 encodes AnkyrinG (AnkG), a member of the Ankyrin family that is expressed in several different isoforms in many tissues. A unique serine-rich domain and tail domain in the two largest isoforms of AnkG (270 and 480kDa), restrict AnkG to the axon initial segment and nodes of Ranvier of myelinated neurons. At these sites, AnkG is a master regulator, coordinating the strict clustering of components necessary for proper action potential initiation and propagation along the axon. These components include voltage-gated sodium channels, potassium channels and members of the L1 cell adhesion molecule family. Genetic variation in the ANK3 gene has been linked to a range of neuropsychiatric and neurodevelopmental disorders in human, including schizophrenia, bipolar disorder, intellectual disability and autism spectrum disorders. Here, we study the effect of reduced expression of the large isoforms of Ank3 on cognition and behaviour using a heterozygous knockout mouse model. In three independent behavioural tests, being the open field test, elevated plus maze and social interaction test, we found evidence for increased anxiety in our Ank3 mouse model. Besides, we observed specific neuroanatomical defects in heterozygous knockout mice, including a smaller cingulate cortex, granular retrosplenial cortex, primary motor cortex and fimbria of the hippocampus.


Subject(s)
Ankyrins/deficiency , Brain/metabolism , Brain/pathology , Cognition/physiology , Animals , Ankyrins/genetics , Anxiety/metabolism , Anxiety/pathology , Disease Models, Animal , Heterozygote , Male , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/physiology , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , Neurodevelopmental Disorders/psychology , Phenotype , Protein Isoforms , Sensory Gating/physiology , Social Behavior
2.
Clin Genet ; 88(2): 140-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25081361

ABSTRACT

Intellectual disability (ID), characterized by an intellectual performance of at least 2 SD (standard deviations) below average is a frequent, lifelong disorder with a prevalence of 2-3%. Today, only for at most half of patients a diagnosis is made. Knowing the cause of the ID is important for patients and their relatives, as it allows for appropriate medical care, prognosis on further development of the disorder, familial counselling or access to support groups. Whole-exome sequencing (WES) now offers the possibility to identify the genetic cause for patients for which all previously available genetic tests, including karyotyping, specific gene analysis, or microarray analysis did not reveal causative abnormalities. However, data analysis of WES experiments is challenging. Here we present an analysis workflow implementable in any laboratory, requiring no bioinformatics knowledge. We demonstrated its feasibility on a cohort of 10 patients, in which we found a conclusive diagnosis in 3 and a likely diagnosis in 2 more patients. Of the three conclusive diagnoses, one was a clinically suspected mutation missed by Sanger sequencing, and one was an atypical presentation of a known monogenic disorder, highlighting two essential strengths of WES-based diagnostics.


Subject(s)
Exome/genetics , Genetic Testing , Genome-Wide Association Study , Intellectual Disability/genetics , Base Sequence , DNA Copy Number Variations , Family/psychology , Female , High-Throughput Nucleotide Sequencing , Humans , Intellectual Disability/epidemiology , Intellectual Disability/psychology , Male , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA
3.
J Med Genet ; 46(8): 511-23, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19372089

ABSTRACT

BACKGROUND: Recurrent 15q13.3 microdeletions were recently identified with identical proximal (BP4) and distal (BP5) breakpoints and associated with mild to moderate mental retardation and epilepsy. METHODS: To assess further the clinical implications of this novel 15q13.3 microdeletion syndrome, 18 new probands with a deletion were molecularly and clinically characterised. In addition, we evaluated the characteristics of a family with a more proximal deletion between BP3 and BP4. Finally, four patients with a duplication in the BP3-BP4-BP5 region were included in this study to ascertain the clinical significance of duplications in this region. RESULTS: The 15q13.3 microdeletion in our series was associated with a highly variable intra- and inter-familial phenotype. At least 11 of the 18 deletions identified were inherited. Moreover, 7 of 10 siblings from four different families also had this deletion: one had a mild developmental delay, four had only learning problems during childhood, but functioned well in daily life as adults, whereas the other two had no learning problems at all. In contrast to previous findings, seizures were not a common feature in our series (only 2 of 17 living probands). Three patients with deletions had cardiac defects and deletion of the KLF13 gene, located in the critical region, may contribute to these abnormalities. The limited data from the single family with the more proximal BP3-BP4 deletion suggest this deletion may have little clinical significance. Patients with duplications of the BP3-BP4-BP5 region did not share a recognisable phenotype, but psychiatric disease was noted in 2 of 4 patients. CONCLUSIONS: Overall, our findings broaden the phenotypic spectrum associated with 15q13.3 deletions and suggest that, in some individuals, deletion of 15q13.3 is not sufficient to cause disease. The existence of microdeletion syndromes, associated with an unpredictable and variable phenotypic outcome, will pose the clinician with diagnostic difficulties and challenge the commonly used paradigm in the diagnostic setting that aberrations inherited from a phenotypically normal parent are usually without clinical consequences.


Subject(s)
Chromosome Aberrations , Chromosome Deletion , Chromosome Disorders/genetics , Chromosomes, Human, Pair 15/genetics , Gene Duplication , Adolescent , Adult , Child , Child, Preschool , Chromosome Disorders/pathology , Female , Humans , Infant , Infant, Newborn , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Oligonucleotide Array Sequence Analysis , Pedigree , Pregnancy , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...