Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 515: 248-254, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29351854

ABSTRACT

HYPOTHESIS: Colloidal particles in a pure nonpolar solvent are expected to be in a state of dynamic equilibrium where a particle's charge fluctuates around a stable mean value. However, we find that PHSA-coated PMMA microparticles in dodecane gain positive charge over time. We hypothesize that this phenomenon is prompted by the high electric field (∼1 V/µm) that is applied in these measurements. Hence, we expect the reaction rate at which charge builds up on the particle to change when modifying the measurement parameters. EXPERIMENTS: Single elementary charging and discharging events can be resolved by measuring the charge of PHSA-coated PMMA particles with optical trapping electrophoresis. With this technique, the influence of the electric field amplitude and frequency, particle size, electrode material and acquired charge can be investigated. FINDINGS: The rate of the charging phenomenon is proportional to the amplitude of the applied electric field and the charging stops when the voltage is switched off. We propose a reaction mechanism where the particle sheds negatively charged ions. This mechanism can account for all the experimental observations of the electric field induced charging phenomenon.

2.
Opt Express ; 25(21): 25853-25866, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29041248

ABSTRACT

We demonstrate the use of low spatial and temporal coherence holography microscopy, based on the Lorenz-Mie model, using the standard tungsten-halogen lamp present in an inverted microscope. An optical model is put forward to incorporate the effect of spectral width and different incidence angles of the incident light determined by the aperture at the back focal plane of the condenser lens. The model is validated for 899 nm diameter polystyrene microspheres in glycerol, giving a resolution of 0.4% for the index of refraction and 2.2% for the diameter of the particles.

3.
Sensors (Basel) ; 16(6)2016 May 26.
Article in English | MEDLINE | ID: mdl-27240362

ABSTRACT

In this paper, we report on the design and performance of a 1 cm², 90 × 92-pixel image sensor. It is made X-ray sensitive by the use of a scintillator. Its pixels have a charge packet counting circuit topology with two channels, each realizing a different charge packet size threshold and analog domain event counting. Here, the sensor's performance was measured in setups representative of a medical X-ray environment. Further, two-energy-level photon counting performance is demonstrated, and its capabilities and limitations are documented. We then provide an outlook on future improvements.

4.
Electrophoresis ; 36(17): 2102-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25963750

ABSTRACT

Electric fields offer a variety of functionalities to Lab-on-a-Chip devices. The use of these fields often results in significant Joule heating, affecting the overall performance of the system. Precise knowledge of the temperature profile inside a microfluidic device is necessary to evaluate the implications of heat dissipation. This article demonstrates how an optically trapped microsphere can be used as a temperature probe to monitor Joule heating in these devices. The Brownian motion of the bead at room temperature is compared with the motion when power is dissipated in the system. This gives an estimate of the temperature increase at a specific location in a microfluidic channel. We demonstrate this method with solutions of different ionic strengths, and establish a precision of 0.9 K and an accuracy of 15%. Furthermore, it is demonstrated that transient heating processes can be monitored with this technique, albeit with a limited time resolution.


Subject(s)
Hot Temperature , Microfluidic Analytical Techniques/methods , Microspheres , Equipment Design , Microfluidic Analytical Techniques/instrumentation , Motion , Optical Tweezers
5.
Opt Express ; 22(20): 24635-45, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25322038

ABSTRACT

We use Fourier-Bessel Image Decomposition (FBID) of microscopy images to investigate the size, refractive index and 3-dimensional position of individual colloidal microspheres. With measurements of monodisperse polystyrene and poly(methyl methacrylate) particles we achieve a resolution of 1% in size and 0.2% in refractive index for a single image which is sufficient for accurate in situ characterization of polydisperse colloids. Also the binding of avidin molecules to individual biotinylated polystyrene particles is resolved. Finally, the FBID method offers a straightforward approach to 3-dimensional out-of-focus tracking. Here, the z-position of a freely diffusing particle is calculated by applying the statistics of Brownian motion to its set of Fourier-Bessel coefficients.

6.
Opt Lett ; 39(16): 4942-5, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25121914

ABSTRACT

We demonstrate a new kind of single-mode micro-optical waveguide based on a liquid core on top of solid substrate and air cladding. The liquid is held in place by surface tension and patterned surface energy on the substrate. Due to the smooth nature of the liquid/air interface down to the molecular level, low scattering losses are expected. Losses were measured to be -6.0 and -7.8 dB/cm for, respectively, 12 and 9 µm wide waveguides.

SELECTION OF CITATIONS
SEARCH DETAIL
...