Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 912: 169620, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38157915

ABSTRACT

In this study, multiple soil-plant-atmosphere continuum (SPAC) monitoring methodologies, including electrical resistivity tomography (ERT), proximal thermal sensing techniques, and micrometeorological data, were combined with two-dimensional (2-D) soil hydrological modelling using HYDRUS 2-D to explore the soil water redistribution, and infer the relative crop water status in a subsurface drip irrigated (SDI) processing tomato field located in California (Yolo County, USA). Specifically, time-lapse ERT surveys were performed at two transects distributed parallel and perpendicular, respectively, to the SDI line, during an irrigation event. The ERT results were compared to HYDRUS 2-D outputs and the relative differences were explained in the form of local heterogeneities in electrical resistivity (ER) changes, as a proxy for soil water content (SWC) variations. Concurrent simultaneous soil wetting and root water uptake during the last irrigation event of the season caused negligible changes in ER in the active root zone. Slight differences in ER were observed in the top 20 cm along the dripline, confirming that the emitter spacing is small enough to create a wetted strip along the processing tomato bed. These changes were also compared to SWC values measured with time domain reflectometry soil moisture sensors. A comparison between HYDRUS 2-D and ERT confirmed negligible changes in ER during irrigation due to simultaneous wetting and root water uptake processes. In addition, a good correlation was observed between the proximal sensed and the ERT results. Finally, the findings of this study underscore the necessity of using multiple methods for improving our knowledge of the SPAC system under real field conditions.

2.
Plants (Basel) ; 8(10)2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31627476

ABSTRACT

The article presents the results of research consisting of the application of deficit irrigation (DI) criteria, combined with the adoption of micro-irrigation methods, on orange orchards (Citrus sinensis (L.) Osbeck) in Sicily (Italy) during the irrigation season of 2015. Regulated deficit irrigation (RDI, T3) and partial root-zone drying (PRD, T4) strategies were compared with full irrigation (T1) and sustained deficit irrigation (SDI, T2) treatments in terms of physiological, biochemical, and productive crop response. A geophysical survey (electrical resistivity tomography, ERT) was carried out to identify a link between the percentages of drying soil volume in T4 with leaves abscisic acid (ABA) signal. Results highlight that the orange trees physiological response to water stress conditions did not show particular differences among the different irrigation treatments, not inducing detrimental effects on crop production features. ABA levels in leaves were rather constant in all the treatments, except in T4 during late irrigation season. ERT technique identified that prolonged drying cycles during alternate PRD exposed more roots to severe soil drying, thus increasing leaf ABA accumulation.

3.
Sci Rep ; 9(1): 9913, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31289287

ABSTRACT

Tree rooting strategies are driven by external and internal factors such as climate conditions (rain frequency, wind direction), soil structure and crop type. In order to ensure water efficiency for irrigated crops, it is essential to know how each crop adapts its rooting strategy. We couple Mise-a-la-masse (MALM) with Electrical Resistivity Tomography (ERT) for investigating orange tree roots undergoing different irrigation strategies (Partial Root-zone Drying - or PRD - versus Full Irrigation). This is a totally novel approach giving an overall picture of roots structure and functioning in the subsoil. Our results show clear differences of rooting extent between different irrigation strategies, and identify privileged direction of root development due to distinct RWU patterns. These results are corroborated also by seasonal monitoring of evapotranspiration (ET) and soil water content (SWC), which exhibit very large differences in the soil water distribution in space and time for the trees undergoing different irrigation schedules.


Subject(s)
Agricultural Irrigation/methods , Citrus/growth & development , Crops, Agricultural/growth & development , Groundwater/analysis , Plant Roots/growth & development , Plant Transpiration/physiology , Trees/growth & development , Environmental Monitoring , Remote Sensing Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...