Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-512927

ABSTRACT

A series of SARS-CoV-2 variants of concern (VOCs) have evolved in humans during the COVID-19 pandemic--Alpha, Beta, Gamma, Delta, and Omicron. Here, we used global proteomic and genomic analyses during infection to understand the molecular responses driving VOC evolution. We discovered VOC-specific differences in viral RNA and protein expression levels, including for N, Orf6, and Orf9b, and pinpointed several viral mutations responsible. An analysis of the host response to VOC infection and comprehensive interrogation of altered virus-host protein-protein interactions revealed conserved and divergent regulation of biological pathways. For example, regulation of host translation was highly conserved, consistent with suppression of VOC replication in mice using the translation inhibitor plitidepsin. Conversely, modulation of the host inflammatory response was most divergent, where we found Alpha and Beta, but not Omicron BA.1, antagonized interferon stimulated genes (ISGs), a phenotype that correlated with differing levels of Orf6. Additionally, Delta more strongly upregulated proinflammatory genes compared to other VOCs. Systematic comparison of Omicron subvariants revealed BA.5 to have evolved enhanced ISG and proinflammatory gene suppression that similarly correlated with Orf6 expression, effects not seen in BA.4 due to a mutation that disrupts the Orf6-nuclear pore interaction. Our findings describe how VOCs have evolved to fine-tune viral protein expression and protein-protein interactions to evade both innate and adaptive immune responses, offering a likely explanation for increased transmission in humans. One sentence summarySystematic proteomic and genomic analyses of SARS-CoV-2 variants of concern reveal how variant-specific mutations alter viral gene expression, virus-host protein complexes, and the host response to infection with applications to therapy and future pandemic preparedness.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-503706

ABSTRACT

The appearance of new dominant variants of concern (VOCs) of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) threatens the global response to the COVID-19 pandemic. Of these, the alpha variant (also known as B.1.1.7) that appeared initially in the UK became the dominant variant in much of Europe and North America in the first half of 2021. The Spike (S) glycoprotein of alpha acquired seven mutations and two deletions compared to the ancestral virus, including the P681H mutation in the polybasic cleavage site that has been suggested to enhance S cleavage. Here, we show that the alpha S protein confers a level of resistance to the effects of interferon-{beta} (IFN{beta}) in human lung epithelial cells. This correlates with resistance to an entry restriction mediated by interferon-induced transmembrane protein 2 (IFITM2) and a pronounced infection enhancement by IFITM3. Furthermore, the P681H mutation is essential for resistance to IFN{beta} and context-dependent resistance to IFITMs in the alpha S. However, while this appears to confer changes in sensitivity to endosomal protease inhibition consistent with enhanced cell-surface entry, its reversion does not reduce cleaved S incorporation into particles, indicating a role downstream of furin cleavage. Overall, we suggest that, in addition to adaptive immune escape, mutations associated with VOCs may well also confer replication and/or transmission advantage through adaptation to resist innate immune mechanisms. IMPORTANCEThe emergence of Variants of Concern of SARS-CoV-2 has been a key challenge in the global response to the COVID-19 pandemic. Accumulating evidence suggests VOCs are being selected to evade the human immune response, with much interest focussed on mutations in the Spike protein that escape from neutralizing antibody responses. However, resistance to the innate immune response is essential for efficient viral replication and transmission. Here we show that the alpha (B.1.1.7) VOC of SARS-CoV-2 is substantially more resistant to type-1 interferons than the parental Wuhan-like virus. This correlates with resistance to the antiviral protein IFITM2, and enhancement by its paralogue IFITM3, that block virus entry into target cells. The key determinant of this is a proline to histidine change at position 681 in S adjacent to the furin-cleavage site that we have shown previously modulates IFITM2 sensitivity. Unlike other VOCs, in the context of the alpha spike, P681H modulates cell entry pathways of SARS-CoV-2, further reducing its dependence one endosomal proteases. Reversion of position 681 to a proline in viruses bearing the alpha spike is sufficient to restore interferon and IFITM2 sensitivity without reducing furin-mediated spike cleavage, suggesting post cleavage conformational changes in S are changing the viral entry pathway and therefore sensitivity to interferon. These data highlight the dynamic nature of the SARS CoV-2 S as it adapts to both innate and adaptive immunity in the human population.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-467693

ABSTRACT

Variants of concern (VOCs) of severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2) threaten the global response to the COVID-19 pandemic. The alpha (B.1.1.7) variant appeared in the UK became dominant in Europe and North America in early 2021. The Spike glycoprotein of alpha has acquired a number mutations including the P681H mutation in the polybasic cleavage site that has been suggested to enhance Spike cleavage. Here, we show that the alpha Spike protein confers a level of resistance to the effects of interferon-{beta} (IFN{beta}) in lung epithelial cells. This correlates with resistance to restriction mediated by interferon-induced transmembrane protein-2 (IFITM2) and a pronounced infection enhancement by IFITM3. Furthermore, the P681H mutation is necessary for comparative resistance to IFN{beta} in a molecularly cloned SARS-CoV-2 encoding alpha Spike. Overall, we suggest that in addition to adaptive immune escape, mutations associated with VOCs also confer replication advantage through adaptation to resist innate immunity.

SELECTION OF CITATIONS
SEARCH DETAIL
...