Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21256681

ABSTRACT

Cell autonomous antiviral defenses can inhibit the replication of viruses and reduce transmission and disease severity. To better understand the antiviral response to SARS-CoV-2, we used interferon-stimulated gene (ISG) expression screening to reveal that OAS1, through RNase L, potently inhibits SARS-CoV-2. We show that while some people can express a prenylated OAS1 variant, that is membrane-associated and blocks SARS-CoV-2 infection, other people express a cytosolic, nonprenylated OAS1 variant which does not detect SARS-CoV-2 (determined by the splice-acceptor SNP Rs10774671). Alleles encoding nonprenylated OAS1 predominate except in people of African descent. Importantly, in hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting this antiviral defense is a major component of a protective antiviral response. Remarkably, approximately 55 million years ago, retrotransposition ablated the OAS1 prenylation signal in horseshoe bats (the presumed source of SARS-CoV-2). Thus, SARS-CoV-2 never had to adapt to evade this defense. As prenylated OAS1 is widespread in animals, the billions of people that lack a prenylated OAS1 could make humans particularly vulnerable to the spillover of coronaviruses from horseshoe bats.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-411389

ABSTRACT

The pandemic spread of SARS-CoV-2, the etiological agent of COVID-19, represents a significant and ongoing international health crisis. A key symptom of SARS-CoV-2 infection is the onset of fever, with a hyperthermic temperature range of 38 to 41{degrees}C. Fever is an evolutionarily conserved host response to microbial infection and inflammation that can influence the outcome of viral pathogenicity and regulation of host innate and adaptive immune responses. However, it remains to be determined what effect elevated temperature has on SARS-CoV-2 tropism and replication. Utilizing a 3D air-liquid interface (ALI) model that closely mimics the natural tissue physiology and cellular tropism of SARS-CoV-2 infection in the respiratory airway, we identify tissue temperature to play an important role in the regulation of SARS-CoV-2 infection. We show that temperature elevation induces wide-spread transcriptome changes that impact upon the regulation of multiple pathways, including epigenetic regulation and lncRNA expression, without disruption of general cellular transcription or the induction of interferon (IFN)-mediated antiviral immune defences. Respiratory tissue incubated at temperatures >37{degrees}C remained permissive to SARS-CoV-2 infection but severely restricted the initiation of viral transcription, leading to significantly reduced levels of intraepithelial viral RNA accumulation and apical shedding of infectious virus. To our knowledge, we present the first evidence that febrile temperatures associated with COVID-19 inhibit SARS-CoV-2 replication. Our data identify an important role for temperature elevation in the epithelial restriction of SARS-CoV-2 that occurs independently of the induction of canonical IFN-mediated antiviral immune defences and interferon-stimulated gene (ISG) expression.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-309948

ABSTRACT

Two cats from different COVID-19-infected households in the UK were found to be infected with SARS-CoV-2 from humans, demonstrated by immunofluorescence, in situ hybridisation, reverse transcriptase quantitative PCR and viral genome sequencing. Lung tissue collected post-mortem from cat 1 displayed pathological and histological findings consistent with viral pneumonia and tested positive for SARS-CoV-2 antigens and RNA. SARS-CoV-2 RNA was detected in an oropharyngeal swab collected from cat 2 that presented with rhinitis and conjunctivitis. High throughput sequencing of the virus from cat 2 revealed that the feline viral genome contained five single nucleotide polymorphisms (SNPs) compared to the nearest UK human SARS-CoV-2 sequence. An analysis of cat 2s viral genome together with nine other feline-derived SARS-CoV-2 sequences from around the world revealed no shared catspecific mutations. These findings indicate that human-to-cat transmission of SARS-CoV-2 occurred during the COVID-19 pandemic in the UK, with the infected cats developing mild or severe respiratory disease. Given the versatility of the new coronavirus, it will be important to monitor for human-to-cat, cat-to-cat and cat-to-human transmission.

SELECTION OF CITATIONS
SEARCH DETAIL
...