Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 90(3): 034102, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30927796

ABSTRACT

The membrane concentration osmometer coupled with multiple sample preparations has been used for over a century to determine a number of colloidal properties. At the dilute region, this method has been used to determine solute molecular mass. When the solution is proteinaceous, in the intermediate region, the osmotic pressure profile provides the second virial coefficient, useful for estimating protein crystallization and salting out. At the most crowded concentrations, it provides insight into protein hydration and protein-ion interaction. One of the most critical factors in generating the osmotic pressure profile is minimizing the quantity of protein used and reducing the error in preparing samples. Here, we introduce a membrane concentrating osmometer that allows one to measure osmotic pressure over a wide concentration range from a single sample. A test study was performed using the osmotic pressure profile of self-crowded bovine serum albumin solutions. The resulting profile was in good agreement with previous data in the literature obtained from multiple sample studies. The osmotic pressure profile was further used with a free solvent-based osmotic pressure model to determine protein hydration and ion binding. These results were in excellent agreement with literature values. This concentrating osmometer has several advantages over a conventional concentration osmometer for obtaining the osmotic pressure profile for proteinaceous solutions: (1) the amount of protein required is significantly decreased, (2) the potential for experimental error in sample preparation diminishes, and (3) the time for generating the osmotic pressure profile is substantially reduced.

2.
J Phys Chem B ; 122(33): 8037-8046, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30074781

ABSTRACT

The free-solvent-based (FSB) model and osmotic pressure were used to probe the ion binding and protein hydration for self-crowded bovine serum albumin in 0.15 M NaF, NaCl, NaI, and NaSCN solutions. All experiments were conducted with solutions at pH 7.4. The regressed results of the FSB model behavior to the measured osmotic pressure were excellent, albeit, the osmotic pressure data for NaSCN were noisy. The resulting ion binding and hydration were realistic values and the covariance of the two parameters was exceptionally low, providing substantial credibility to the FSB model. The results showed that the kosmotropic F- and neutral Cl- solutions generated significantly higher ion binding and protein hydration than the chaotropic solutions of I- and SCN-. Further, the ionic strength ratio and resulting hydration implied that the chaotropic solutions had substantially higher aggregation than the other salts investigated. Overall, the FSB model provides an additional, complementary tool to contribute to the analysis of crowded protein solutions relative to anions in the Hofmeister series as it can interrogate crowded solutions directly; something that is not possible with many measurement techniques.


Subject(s)
Anions/chemistry , Osmotic Pressure , Serum Albumin, Bovine/chemistry , Animals , Cattle , Models, Chemical , Osmolar Concentration , Solutions/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...