Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Radiat Environ Biophys ; 63(1): 165-179, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38413426

ABSTRACT

The EIVIC project was launched in 2020, and the main goal was the organisation of a European intercomparison of in-vivo monitoring laboratories dealing with direct measurements of gamma-emitting radionuclides incorporated into the body of exposed workers. This project was organised jointly by members of EURADOS Working Group 7 on internal dosimetry (WG7), the Federal Office for Radiation Protection (BfS, Germany) and the Radioprotection and Nuclear Safety Institute (IRSN, France). The objective was to assess the implementation of individual-monitoring requirements in EU Member States on the basis of in-vivo measurements and to gain insight into the performance of in-vivo measurements using whole-body counters. In this context, a total of 41 in-vivo monitoring laboratories from 21 countries, together with JRC (EC) and IAEA participated. The results were submitted in terms of activity (Bq) of the radionuclides identified inside phantoms that were circulated to all participants. The measured data were compared with reference activity values to evaluate the corresponding bias according to the standards ISO 28218 and ISO 13528. In general, the results of the different exercises are good, and most facilities are in conformity with the criteria for the bias and z-scores in the ISO standards. Furthermore, information about technical and organisational characteristics of the participating laboratories was collected to test if they had a significant influence on the reported results.


Subject(s)
Laboratories , Radiation Monitoring , Humans , Radiometry/methods , Radioisotopes , France , Reference Standards
2.
Radiat Prot Dosimetry ; 199(15-16): 1729-1734, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37819341

ABSTRACT

The European Radiation Dosimetry Group has carried out several different types of intercomparison (IC) exercises in the past that qualify as proficiency tests for different dosimetry systems and types of radiation. The first neutron dosemeter IC was held in 2012 (IC2012n) and was followed by a second in 2017/2018 (IC2017n). In sum, 31 Individual Monitoring Services (IMSs) entered 34 dosimetry systems in IC2012n, and 32 IMSs entered 33 dosimetry systems for IC2017n. Such exercises provided a rare opportunity to see how neutron dosemeters perform. For the IC2012n exercise, there were no applicable performance standards for neutron personal dosemeters. ISO/TC85/SC2 updated the ISO Standard 14146 in 2018 (ISO 14146:2018. Radiation protection-Criteria and performance limits for the periodic evaluation of dosimetry services) to include neutron dosimetry. It was thus possible to analyse the IC2017n exercise in accordance with the requirements given by this new standard. It is now of interest to reanalyse the results of IC2012n to quantify any modifications to the conclusions.


Subject(s)
Occupational Exposure , Radiation Monitoring , Radiation Monitoring/methods , Radiation Dosage , Radiometry/methods , Radiation Dosimeters , Neutrons , Occupational Exposure/analysis
3.
J Radiol Prot ; 42(4)2022 10 05.
Article in English | MEDLINE | ID: mdl-36130583

ABSTRACT

Individual monitoring of radiation workers is essential to ensure compliance with legal dose limits and to ensure that doses are As Low As Reasonably Achievable. However, large uncertainties still exist in personal dosimetry and there are issues with compliance and incorrect wearing of dosimeters. The objective of the PODIUM (Personal Online Dosimetry Using Computational Methods) project was to improve personal dosimetry by an innovative approach: the development of an online dosimetry application based on computer simulations without the use of physical dosimeters. Occupational doses were calculated based on the use of camera tracking devices, flexible individualised phantoms and data from the radiation source. When combined with fast Monte Carlo simulation codes, the aim was to perform personal dosimetry in real-time. A key component of the PODIUM project was to assess and validate the methodology in interventional radiology workplaces where improvements in dosimetry are needed. This paper describes the feasibility of implementing the PODIUM approach in a clinical setting. Validation was carried out using dosimeters worn by Vascular Surgeons and Interventional Cardiologists during patient procedures at a hospital in Ireland. Our preliminary results from this feasibility study show acceptable differences of the order of 40% between calculated and measured staff doses, in terms of the personal dose equivalent quantity Hp(10), however there is a greater deviation for more complex cases and improvements are needed. The challenges of using the system in busy interventional rooms have informed the future needs and applicability of PODIUM. The availability of an online personal dosimetry application has the potential to overcome problems that arise from the use of current dosimeters. In addition, it should increase awareness of radiation protection among staff. Some limitations remain and a second phase of development would be required to bring the PODIUM method into operation in a hospital setting. However, an early prototype system has been tested in a clinical setting and the results from this two-year proof-of-concept PODIUM project are very promising for future development.


Subject(s)
Cardiology , Occupational Exposure , Feasibility Studies , Humans , Occupational Exposure/analysis , Occupational Exposure/prevention & control , Radiation Dosage , Radiology, Interventional , Radiometry/methods
4.
Phys Med ; 87: 131-135, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34153572

ABSTRACT

Occupational radiation doses from interventional procedures have the potential to be relatively high. The requirement to optimise these doses encourages the use of electronic or active personal dosimeters (APDs) which are now increasingly used in hospitals. They are typically used in tandem with a routine passive dosimetry monitoring programme, with APDs used for real-time readings, for training purposes and when new imaging technology is introduced. However, there are limitations when using APDs. A survey in hospitals to identify issues related to the use of APDs was recently completed, along with an extensive series of APD tests by the EURADOS Working Group 12 on Dosimetry for Medical Imaging. The aim of this review paper is to summarise the state of the art regarding the use of APDs. We also used the results of our survey and our tests to develop a set of recommendations for the use of APDs in the clinical interventional radiology/cardiology settings, and draw attention to some of the current challenges.


Subject(s)
Occupational Exposure , Radiation Monitoring , Radiation Protection , Hospitals , Occupational Exposure/analysis , Radiation Dosage , Radiology, Interventional , Workplace
5.
Radiat Prot Dosimetry ; 194(1): 42-56, 2021 May 31.
Article in English | MEDLINE | ID: mdl-33989429

ABSTRACT

Since 2012, the European Radiation Dosimetry Group (EURADOS) has developed its Strategic Research Agenda (SRA), which contributes to the identification of future research needs in radiation dosimetry in Europe. Continued scientific developments in this field necessitate regular updates and, consequently, this paper summarises the latest revision of the SRA, with input regarding the state of the art and vision for the future contributed by EURADOS Working Groups and through a stakeholder workshop. Five visions define key issues in dosimetry research that are considered important over at least the next decade. They include scientific objectives and developments in (i) updated fundamental dose concepts and quantities, (ii) improved radiation risk estimates deduced from epidemiological cohorts, (iii) efficient dose assessment for radiological emergencies, (iv) integrated personalised dosimetry in medical applications and (v) improved radiation protection of workers and the public. This SRA will be used as a guideline for future activities of EURADOS Working Groups but can also be used as guidance for research in radiation dosimetry by the wider community. It will also be used as input for a general European research roadmap for radiation protection, following similar previous contributions to the European Joint Programme for the Integration of Radiation Protection Research, under the Horizon 2020 programme (CONCERT). The full version of the SRA is available as a EURADOS report (www.eurados.org).


Subject(s)
Radiation Monitoring , Radiation Protection , Europe , Humans , Radiation Dosage , Radiation, Ionizing , Radiometry
6.
Radiat Prot Dosimetry ; 195(3-4): 391-398, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-33823548

ABSTRACT

Exposure levels to staff in interventional radiology (IR) may be significant and appropriate assessment of radiation doses is needed. Issues regarding measurements using physical dosemeters in the clinical environment still exist. The objective of this work was to explore the prerequisites for assessing staff radiation dose, based on simulations only. Personal dose equivalent, Hp(10), was assessed using simulations based on Monte Carlo methods. The position of the operator was defined using a 3D motion tracking system. X-ray system exposure parameters were extracted from the x-ray equipment. The methodology was investigated and the simulations compared to measurements during IR procedures. The results indicate that the differences between simulated and measured staff radiation doses, in terms of the personal dose equivalent quantity Hp(10), are in the order of 30-70 %. The results are promising but some issues remain to be solved, e.g. an automated tracking of movable parts such as the ceiling-mounted protection shield.


Subject(s)
Occupational Exposure , Radiation Monitoring , Humans , Monte Carlo Method , Occupational Exposure/analysis , Radiation Dosage , Radiology, Interventional , Radiometry
7.
J Radiol Prot ; 41(2)2021 06 01.
Article in English | MEDLINE | ID: mdl-33784644

ABSTRACT

The PODIUM project aims to provide real-time assessments of occupationally exposed workers by tracking their motion and combining this with a simulation of the radiation field. The present work describes the approach that would be taken in mixed neutron-gamma fields, and details the methods for generating and applying an effective dose rate map; the required fluence to effective dose conversion coefficients at intercardinal angles are also presented. A proof-of-concept of the approach is demonstrated using a simple simulated workplace field within a calibration laboratory, with corroborative comparisons made against survey instrument measurements generally confirming good agreement. Simulated tracking of an individual within the facility was performed, recording a 1.25µSv total effective dose and accounting for dose rates as low as 0.5 nSv h-1, which is much lower than anything that could be accurately measured by physical neutron dosemeters in such a field.


Subject(s)
Occupational Exposure , Radiation Monitoring , Radiation Protection , Calibration , Humans , Neutrons , Occupational Exposure/analysis , Radiation Dosage
8.
Phys Med ; 82: 134-143, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33611050

ABSTRACT

The lack of mailed dosimetry audits of proton therapy centres in Europe has encouraged researchers of EURADOS Working Group 9 (WG9) to compare response of several existing passive detector systems in therapeutic pencil beam scanning. Alanine Electron Paramagnetic Resonance dosimetry systems from 3 different institutes (ISS, Italy; UH, Belgium and IFJ PAN, Poland), natLiF:Mg, Ti (MTS-N) and natLiF:Mg, Cu, P (MCP-N) thermoluminescent dosimeters (TLDs), GD-352M radiophotoluminescent glass dosimeters (RPLGDs) and Al2O3:C optically stimulated dosimeters (OSLDs) were evaluate. Dosimeter repeatability, batch reproducibility and response in therapeutic Pencil Beam Scanning were verified for implementation as mail auditing system. Alanine detectors demonstrated the lowest linear energy transfer (LET) dependence with an agreement between measured and treatment planning system (TPS) dose below 1%. The OSLDs measured on average a 6.3% lower dose compared to TPS calculation, with no significant difference between varying modulations and ranges. Both GD-352M and MCP-N measured a lower dose than the TPS and luminescent response was dependent on the LET of the therapeutic proton beam. Thermoluminescent response of MTS-N was also found to be dependent on the LET and a higher dose than TPS was measured with the most pronounced increase of 11%. As alanine detectors are characterized by the lowest energy dependence for different parameters of therapeutic pencil beam scanning they are suitable candidates for mail auditing in proton therapy. The response of luminescence detector systems have shown promises even though more careful calibration and corrections are needed for its implementation as part of a mailed dosimetry audit system.


Subject(s)
Proton Therapy , Belgium , Europe , Italy , Poland , Protons , Radiation Dosimeters , Radiometry , Reproducibility of Results , Thermoluminescent Dosimetry
9.
Radiat Prot Dosimetry ; 188(1): 22-29, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-31832653

ABSTRACT

Medical staff in interventional procedures are among the professionals with the highest occupational doses. Active personal dosemeters (APDs) can help in optimizing the exposure during interventional procedures. However, there can be problems when using APDs during interventional procedures, due to the specific energy and angular distribution of the radiation field and because of the pulsed nature of the radiation. Many parameters like the type of interventional procedure, personal habits and working techniques, protection tools used and X-ray field characteristics influence the occupational exposure and the scattered radiation around the patient. In this paper, we compare the results from three types of APDs with a passive personal dosimetry system while being used in real clinical environment by the interventional staff. The results show that there is a large spread in the ratios of the passive and active devices.


Subject(s)
Hospitals , Medical Staff , Occupational Exposure/analysis , Radiation Dosimeters , Radiology, Interventional , Humans , Radiation Dosage , Radiation Monitoring/methods , Radiation Protection/methods , Workplace
10.
Phys Med ; 64: 114-122, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31515010

ABSTRACT

A new mini-TEPC with cylindrical sensitive volume of 0.9 mm in diameter and height, and with external diameter of 2.7 mm, has been developed to work without gas flow. With such a mini counter we have measured the physical quality of the 62 MeV therapeutic proton beam of CATANA (Catania, Italy). Measurements were performed at six precise positions along the Spread-Out Bragg Peak (SOBP): 1.4, 19.4, 24.6, 29.0, 29.7 and 30.8 mm, corresponding to positions of clinical relevance (entrance, proximal, central, and distal-edge of the SOBP) or of high lineal energy transfer (LET) increment (distal-dose drop off). Without refilling the microdosimeter with new gas, the measurements were repeated at the same positions 4 months later, in order to study the stability of the response in sealed-mode operation. From the microdosimetric spectra the frequency-mean lineal energy y-F and the dose-mean lineal energy y-D were derived and compared with average LET values calculated by means of Geant4 simulations. The comparison points out, in particular, a good agreement between microdosimetric y-D and the total dose-average LET¯d, which is the average LET of the mixed radiation field, including the contribution by nuclear reactions.


Subject(s)
Microtechnology/instrumentation , Protons , Radiometry/instrumentation , Linear Energy Transfer , Monte Carlo Method
11.
J Radiol Prot ; 39(4): R37-R50, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31307030

ABSTRACT

This paper provides a summary of the Education and Training (E&T) activities that have been developed and organised by the European Radiation Dosimetry Group (EURADOS) in recent years and in the case of Training Courses over the last decade. These E&T actions include short duration Training Courses on well-established topics organised within the activity of EURADOS Working Groups (WGs), or one-day events integrated in the EURADOS Annual Meeting (workshops, winter schools, the intercomparison participants' sessions and the learning network, among others). Moreover, EURADOS has recently established a Young Scientist Grant and a Young Scientist Award. The Grant supports young scientists by encouraging them to perform research projects at other laboratories of the EURADOS network. The Award is given in recognition of excellent work developed within the WGs' work programme. Additionally, EURADOS supports the dissemination of knowledge in radiation dosimetry by promoting and endorsing conferences such as the individual monitoring (IM) series, the neutron and ion dosimetry symposia (NEUDOS) and contributions to E&T sessions at specific events.

12.
Radiat Prot Dosimetry ; 187(1): 50-60, 2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31111937

ABSTRACT

Air kerma-area product (PKA), cumulative air kerma at patient entrance reference point, fluoroscopy time and number of images were retrospectively collected from 15 hospitals in Lebanon for 11282 fluoroscopically-guided interventional (FGI) procedures between March 2016 and November 2018. National diagnostic reference levels (NDRLs) were established based on the third quartile of the distribution of median values of exposure parameters per department for 27 types of FGI procedures. NDRLs were in line with international DRLs except for coronary angiography (CA), percutaneous coronary interventions (PCI) and transcatheter aortic valve implantation (TAVI) which require optimisation. Additionally, following the National Council on Radiation Protection and Measurements report 168, PCI, TAVI, triple chamber pacemaker implantation, endovascular aortic repair, nephrostomy, kyphoplasty and percutaneous transhepatic biliary drainage were classified as potentially high-dose procedures with >5% of the patients with PKA exceeding 300 Gycm2. The established NDRLs will promote dose optimisation and patient radiation protection.


Subject(s)
Body Burden , Fluoroscopy/methods , Percutaneous Coronary Intervention/methods , Radiology, Interventional/statistics & numerical data , Radiology, Interventional/standards , Humans , Radiation Dosage , Radiation Protection , Reference Values , Retrospective Studies
13.
Radiat Prot Dosimetry ; 183(3): 375-385, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30165531

ABSTRACT

Using a mesh of 30 thermoluminescent dosemeters, adults' patient skin doses were measured for 99 coronary angiography (CA) and 89 percutaneous coronary interventions (PCI) performed in three Lebanese hospitals. Average peak skin dose (Dskin,max) were 152 mGy (range: 16-1144) for CAs and 576 mGy (range: 7-3361) for PCIs. While only four patients had a Dskin,max value exceeding the 2 Gy threshold for skin injuries, several patients had skin dose values above 1 Gy at several distinct locations proving that Dskin,max alone is not sufficient for repetitive procedures; 2D dose maps are required instead. Dskin,max correlated well with total air kerma-area product (PKA,T) for PCI in Hospitals 1 and 2 (R = 0.91 and 0.76, respectively) enabling the setup of an alert level at PKA,T = 240 and 210 Gy cm2, respectively, corresponding to a Dskin,max of 2 Gy. This was not possible for Hospital 3 due to weak correlations between Dskin,max and PKA,T.


Subject(s)
Coronary Angiography , Radiation Dosage , Radiography, Interventional , Skin/radiation effects , Adult , Aged , Aged, 80 and over , Female , Humans , Lebanon , Male , Middle Aged , Percutaneous Coronary Intervention , Prospective Studies , Thermoluminescent Dosimetry
14.
Phys Med Biol ; 63(23): 235007, 2018 Nov 23.
Article in English | MEDLINE | ID: mdl-30468682

ABSTRACT

With more patients receiving external beam radiation therapy with protons, it becomes increasingly important to refine the clinical understanding of the relative biological effectiveness (RBE) for dose delivered during treatment. Treatment planning systems used in clinics typically implement a constant RBE of 1.1 for proton fields irrespective of their highly heterogeneous linear energy transfer (LET). Quality assurance tools that can measure beam characteristics and quantify or be indicative of biological outcomes become necessary in the transition towards more sophisticated RBE weighted treatment planning and for verification of the Monte Carlo and analytical based models they use. In this study the RBE for the CHO-K1 cell line in a passively delivered clinical proton spread out Bragg peak (SOBP) is determined both in vitro and using a silicon-on-insulator (SOI) microdosimetry method paired with the modified microdosimetric kinetic model. The RBE along the central axis of a SOBP with 2 Gy delivered at the middle of the treatment field was found to vary between 1.11-1.98 and the RBE for 10% cell survival between 1.07-1.58 with a 250 kVp x-ray reference radiation and between 1.19-2.34 and 0.95-1.41, respectively, for a Co60 reference. Good agreement was found between RBE values calculated from the SOI-microdosimetry-MKM approach and in vitro. A strong correlation between proton lineal energy and RBE was observed particularly in the distal end and falloff of the SOBP.


Subject(s)
Proton Therapy/methods , Animals , CHO Cells , Cell Survival , Cricetinae , Cricetulus , Dose-Response Relationship, Radiation , Humans , Linear Energy Transfer , Monte Carlo Method , Proton Therapy/adverse effects , Relative Biological Effectiveness
15.
Radiat Prot Dosimetry ; 182(4): 438-447, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-29796629

ABSTRACT

The study monitored occupational dose for 12 interventional cardiologists (first operators) and 10 technicians (second operators), from 10 different Lebanese hospitals performing coronary angiography and precutaneous coronary interventions exclusively on adult patients. Each individual wore dosemeters under and over the lead apron at chest and collar level, respectively, on the wrist and next to the left eye. The total follow-up period for each first/second operator varied between two to six bimonthly monitoring periods. For the first operator, the mean (range) effective, hand and eye lens doses were of 6 (1-41), 112 (10-356) and 15 (5-47) µSv/procedure, respectively. These were of 2.3 (0.1-8), 16 (2-109) and 7 (2-14) µSv/procedure for the second operator. Extrapolated annual eye lens doses revealed that both first and second operators may exceed 3/10th of the annual eye lens dose permissible limit thus supporting the need for dedicated eye lens monitoring.


Subject(s)
Cardiology , Hand/radiation effects , Lens, Crystalline/radiation effects , Occupational Exposure/analysis , Radiation Exposure/analysis , Radiography, Interventional , Adult , Coronary Angiography , Female , Humans , Lebanon , Male , Percutaneous Coronary Intervention , Protective Clothing
16.
Radiat Prot Dosimetry ; 182(2): 252-257, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-29669096

ABSTRACT

Measurements of the dose equivalent at different distances from the isocenter of the proton therapy center at iThemba LABS were previously performed with a tissue-equivalent proportional counter (TEPC). These measurements showed that the scattered radiation levels were one or two orders of magnitude higher in comparison to other passive scattering delivery systems. In order to reduce these radiation levels, additional shielding was installed shortly after the measurements were done. Therefore, the aim of this work is to quantify and assess the reduction of the secondary doses delivered in the proton therapy room at iThemba LABS after the installation of the additional shielding. This has been performed by measuring microdosimetric spectra with a TEPC at 11 locations around the isocenter when a clinical modulated beam of 200 MeV proton was impinging onto a water phantom placed at the isocenter.


Subject(s)
Proton Therapy , Radiometry/methods , Humans , Models, Anatomic , Radiation Protection , Scattering, Radiation , South Africa
17.
Radiat Prot Dosimetry ; 180(1-4): 201-205, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29069460

ABSTRACT

Fluorescent nuclear track detectors (FNTDs) as criticality dosimeters for both neutrons and gamma are further characterized in terms of angular dependence and quick dose assessment. The power spectrum integral depth profiles obtained from stacks of fluorescent images acquired within FNTDs exposed to a broad spectrum neutron field at various angles are analyzed to determine a calibration curve for angular dependence. MCNPX simulations were shown to be in good agreement with experimental results. A prototype triage reader was also designed and tested for quick assessment of dose. An unfolding technique incorporating both energy dependence and angular dependence is discussed. The advantages and shortcomings of using FNTDs in the event of a criticality excursion accident are analyzed.


Subject(s)
Neutrons , Nuclear Reactors , Radiation Dosimeters , Radiometry/instrumentation , Algorithms , Calibration , Computer Simulation , Dose-Response Relationship, Radiation , Fast Neutrons , Gamma Rays , Monte Carlo Method , Photons , Radioactive Hazard Release , Reproducibility of Results
18.
Radiat Prot Dosimetry ; 178(1): 101-111, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28985413

ABSTRACT

The performance of a single or double dosimetry (SD or DD) algorithm on estimating effective dose wearing radioprotective garments (ERPG) depends on the specific irradiation conditions. This study investigates the photon energies and angles of incidence for which the estimation of ERPG with the personal dose equivalents measured over and under the RPG (Ho and Hu) becomes more challenging. The energy and angular dependences of ERPG, Ho and Hu were Monte Carlo calculated for photon exposures. The personal dosimeter of SCK · CEN was modeled and used to determine Ho and Hu. Different SD and DD algorithms were tested and critical exposure conditions were identified. Moreover, the influence of calibration methods was investigated for the SCK · CEN dosimeter when worn over RPG. We found that the accuracy with which ERPG is calculated using SD and DD is strongly dependent on the energy and angle of incidence of photons. Also, the energy of the photon beam used to calibrate the Ho dosimeter can bias the estimation of ERPG.


Subject(s)
Photons , Protective Clothing , Radiation Dosage , Radiation Protection/instrumentation , Algorithms , Humans , Models, Anatomic , Monte Carlo Method , Organs at Risk
19.
Radiat Prot Dosimetry ; 170(1-4): 208-12, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27143793

ABSTRACT

Recent studies demonstrated that lens opacities can occur at lower radiation doses than previously accepted. In view of these studies, the International Commission of Radiological Protection recommended in 2011 to reduce the eye lens dose limit from 150 mSv/y to 20 mSv/y. This implies in the need of monitoring doses received by the eye lenses. In this study, small rod radiophotoluminescent glass dosemeters (GD-300 series; AGC, Japan) were characterized in terms of their energy (ISO 4037 X-rays narrow spectrum series, S-Cs and S-Co) and angular dependence (0  up to 90 degrees, with 2 ISO energies: N-60 and S-Cs). All acquisitions were performed at SCK•CEN-Belgium, using the ORAMED proposed cylindrical phantom. For selected energies (N-60, N-80, N-100, N-120 and N-250), the response of dosemeters irradiated on the ISO water slab phantom, at the Ruder Boskovic Institute-Croatia, was compared to those irradiated on the cylindrical phantom. GD-300 series showed good energy dependence, relative to S-Cs, on the cylindrical phantom. From 0 up to 45 degrees, the dosemeters showed no significant angular dependence, regardless whether they were tested when placed vertically or horizontally on the cylindrical phantom. However, at higher angles, some angular dependence was observed, mainly when the dosemeters were irradiated with low-energy photons (N-60). Results showed that GD-300 series have good properties related to Hp(3), although some improvements may be necessary.


Subject(s)
Lens, Crystalline/radiation effects , Occupational Exposure/analysis , Phantoms, Imaging , Radiation Monitoring/instrumentation , Radiation Protection/methods , Belgium , Croatia , Glass , Humans , Linear Models , Monte Carlo Method , Occupational Exposure/prevention & control , Photons , Radiation Dosage , Radiation Dosimeters , Radiation Monitoring/methods , Radiation Protection/instrumentation , Reproducibility of Results , X-Rays
20.
Radiat Prot Dosimetry ; 170(1-4): 117-21, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26979804

ABSTRACT

About 50 000 workers are being occupationally exposed to radiation in Ukraine. Individual dosimetric monitoring (IDM) is provided by 77 dosimetry services and laboratories of very different scale with a number of monitored workers ranging from several persons to ∼9000. In the present work, the current status of personal dosimetry in Ukraine was studied. The First National Intercomparison (FNI) of the IDM labs was accompanied by a survey of the laboratory operation in terms of coverage, types of dosimetry provided, instrumentation and methodologies used, metrological support, data recording, etc. Totally, 34 laboratories responded to the FNI call, and 18 services with 19 different personal dosimetry systems took part in the intercomparison exercise providing 24 dosimeters each for blind irradiation to photons of 6 different qualities (ISO N-series X-rays, S-Cs and S-Co sources) in a dose range of 5-60 mSv. Performance of the dosimetry labs was evaluated according to ISO 14146 criteria of matching trumpet curves with H0 = 0.2 mSv. The test revealed that 8 of the 19 systems meet ISO 14146 criteria in full, 5 other labs show marginal performance and 6 laboratories demonstrated catastrophic quality of dosimetric results. Altogether, 18 participating labs provide dosimetric monitoring to 37 477 workers (about three-fourths of all occupationally exposed workers), usually on monthly (nuclear industry) or quarterly (rest of applications) basis. Of this number, 20 664 persons (55 %) receive completely adequate individual monitoring, and the number of personnel receiving IDM of inadequate quality counts 3054 persons.


Subject(s)
Occupational Exposure/analysis , Radiation Monitoring/methods , Radiation Protection/methods , Body Burden , Calibration , Humans , Laboratories , Photons , Radiation Dosage , Radiation Dosimeters , Radiation Monitoring/instrumentation , Radiation Monitoring/standards , Radiation Protection/standards , Relative Biological Effectiveness , Reproducibility of Results , Ukraine , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...