Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
BMC Ecol Evol ; 21(1): 126, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34154535

ABSTRACT

BACKGROUND: Many animals display morphological and behavioural adaptations to the habitats in which they live and the resources they exploit. Bite force is an important whole-organism performance trait that allows an increase in dietary breadth, the inclusion of novel prey in the diet, territory and predatory defence, and is important during mating in many lizards. METHODS: Here, we study six species of southern African agamid lizards from three habitat types (ground-dwelling, rock-dwelling, and arboreal) to investigate whether habitat use constrains head morphology and bite performance. We further tested whether bite force and head morphology evolve as adaptations to diet by analysing a subset of these species for which diet data were available. RESULTS: Overall, both jaw length and its out-lever are excellent predictors of bite performance across all six species. Rock-dwelling species have a flatter head relative to their size than other species, possibly as an adaptation for crevice use. However, even when correcting for jaw length and jaw out-lever length, rock-dwelling species bite harder than ground-dwelling species. Diet analyses demonstrate that body and head size are not directly related to diet, although greater in-levers for jaw closing (positively related to bite force) are associated to an increase of hard prey in the diet. Ground-dwelling species consume more ants than other species. CONCLUSIONS: Our results illustrate the role of head morphology in driving bite force and demonstrate how habitat use impacts head morphology but not bite force in these agamids. Although diet is associated with variation in head morphology it is only partially responsible for the observed differences in morphology and performance.


Subject(s)
Bite Force , Lizards , Animals , Diet , Ecosystem , Head , Lizards/anatomy & histology
2.
J Evol Biol ; 30(10): 1846-1861, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28714214

ABSTRACT

Animals communicate using a variety of signals that differ dramatically among and within species. The astonishing dewlap diversity in anoles has attracted considerable attention in this respect. Yet, the evolutionary processes behind it remain elusive and have mostly been explored for males only. Here, we considered Anolis sagrei males and females to study signal divergence among populations. First, we assessed the degree of variation in dewlap design (size, pattern and colour) and displays by comparing 17 populations distributed across the Caribbean. Second, we assessed whether the observed dewlap diversity is associated with variation in climate-related environmental conditions. Results showed that populations differed in all dewlap characteristics, with the exception of display rate in females. We further found that males and females occurring in 'xeric' environments had a higher proportion of solid dewlaps with higher UV reflectance. In addition, lizards inhabiting 'mesic' environments had primarily marginal dewlaps showing high reflectance in red. For dewlap display, a correlation with environment was only observed in males. Our study provides evidence for a strong relationship between signal design and prevailing environmental conditions, which may result from differential selection on signal efficacy. Moreover, our study highlights the importance of including females when studying dewlaps in an evolutionary context.


Subject(s)
Animal Communication , Climate , Environment , Lizards/physiology , Visual Perception/physiology , Animals , Female , Male
3.
Proc Biol Sci ; 281(1777): 20132677, 2014 Feb 22.
Article in English | MEDLINE | ID: mdl-24403334

ABSTRACT

Trade-offs arise when two functional traits impose conflicting demands on the same design trait. Consequently, excellence in one comes at the cost of performance in the other. One of the most widely studied performance trade-offs is the one between sprint speed and endurance. Although biochemical, physiological and (bio)mechanical correlates of either locomotor trait conflict with each other, results at the whole-organism level are mixed. Here, we test whether burst (speed, acceleration) and sustained locomotion (stamina) trade off at both the isolated muscle and whole-organism level among 17 species of lacertid lizards. In addition, we test for a mechanical link between the organismal and muscular (power output, fatigue resistance) performance traits. We find weak evidence for a trade-off between burst and sustained locomotion at the whole-organism level; however, there is a significant trade-off between muscle power output and fatigue resistance in the isolated muscle level. Variation in whole-animal sprint speed can be convincingly explained by variation in muscular power output. The variation in locomotor stamina at the whole-organism level does not relate to the variation in muscle fatigue resistance, suggesting that whole-organism stamina depends not only on muscle contractile performance but probably also on the performance of the circulatory and respiratory systems.


Subject(s)
Biological Evolution , Lizards/physiology , Locomotion , Muscle, Skeletal/physiology , Acceleration , Animals , Biomechanical Phenomena , Muscle Contraction , Muscle Fatigue , Species Specificity
4.
Genetica ; 138(3): 387-93, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20128114

ABSTRACT

If alternative phenotypes in polymorphic populations do not mate randomly, they can be used as model systems to study adaptive diversification and possibly the early stages of sympatric speciation. In this case, non random mating is expected to support genetic divergence among the different phenotypes. In the present study, we use population genetic analyses to test putatively neutral genetic divergence (of microsatellite loci) among three colour morphs of the lizard Podarcis melisellensis, which is associated with differences in male morphology, performance and behaviour. We found weak evidence of genetic divergence, indicating that gene flow is somewhat restricted among morphs and suggesting possible adaptive diversification.


Subject(s)
Genetic Variation , Lizards/genetics , Pigmentation , Animals , DNA/analysis , DNA/genetics , Evolution, Molecular , Female , Gene Flow , Genetic Speciation , Genetics, Population , Genome , Male , Mating Preference, Animal , Microsatellite Repeats/genetics , Sex Factors , Species Specificity
5.
Zoology (Jena) ; 112(5): 379-92, 2009.
Article in English | MEDLINE | ID: mdl-19632100

ABSTRACT

Traditionally, it has been suggested that variation in locomotor mode should be correlated with variation in the anatomy of the structures responsible for locomotion. Indeed, organisms can expand their ecological niche by using specialized traits of the locomotor system including hooks, claws, adhesive pads, etc. Despite the fact that claws are the most common biological mechanism of clinging in vertebrates, little is known about their function or evolutionary relationship to habitat use. The present study focuses on claw morphology in 57 species of iguanian lizards occupying different microhabitats. Qualitative differences in claw shape were explored by means of digital photographs, and quantitative measurements of the length, height and curvature of the claws of both fingers and toes were taken and correlated to information on microhabitat use obtained from the literature. Our analyses showed a strong phylogenetic component that obscured relationships between morphology and ecology. Our results also show differences in claw morphology between species that appear to be related to microhabitat use (climbing versus terrestrial species), with the best ecological descriptors being claw length and height. Performance measures and biomechanical analyses of claw function may consequently be better suited to explain the evolution of claw shape in relation to habitat use in this group.


Subject(s)
Behavior, Animal , Ecosystem , Hoof and Claw/anatomy & histology , Iguanas/anatomy & histology , Animals , Locomotion , Phylogeny , Tropical Climate
6.
Horm Behav ; 55(4): 488-94, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19265697

ABSTRACT

Species with alternative phenotypes offer unique opportunities to investigate hormone-behavior relationships. We investigated the relationships between testosterone, corticosterone, morphology, performance, and immunity in a population of lizards (Podarcis melisellensis) which exhibits a color polymorphism. Males occur in three different color morphs (white, yellow, orange), providing an opportunity to test the idea of morphs being alternative solutions to the evolutionary challenges posed on the link between hormones, morphology, performance, and immunity. Morphs differed in bite force capacity, with orange males biting harder, and in corticosterone levels, with yellow males having lower levels than orange. However, morphs did not differ in testosterone levels or in the immunological parameters tested. At the individual level, across morphs, testosterone levels predicted size-corrected bite force capacity, but no relation was found between hormone levels and immunity. Our results do not support the testosterone-based polymorphism hypothesis and reject the hypothesis of a trade-off between testosterone and immunity in this species, but provide a mechanistic link between testosterone and a sexually selected performance trait.


Subject(s)
Bite Force , Corticosterone/blood , Immunocompetence/physiology , Lizards/physiology , Pigmentation/physiology , Testosterone/blood , Animals , Animals, Wild , Body Size/physiology , Hormones/metabolism , Male , Radioimmunoassay
7.
J Evol Biol ; 22(2): 293-305, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19196384

ABSTRACT

Animal signalling systems are extremely diverse as they are under different, often conflicting, selective pressures. A classic textbook example of a diverse signal is the anoline dewlap. Both at the inter- and intraspecific levels, dewlap size, colour, shape and pattern vary extensively. Here, we attempt to elucidate the various factors explaining the diversity in dewlap size and pattern among seven Anolis sagrei populations from different islands in the Bahamas. The seven islands differ in the surface area, number and kind of predators, sexual size dimorphism and Anolis species composition. In addition, we investigate whether selective pressures acting on dewlap design differ between males and females. Whereas dewlap pattern appears to serve a role in species recognition in both sexes, our data suggest that relative dewlap size is under natural and/or sexual selection. We find evidence for the role of the dewlap as a pursuit-deterrence signal in both males and females as relative dewlap size is larger on islands where A. sagrei occurs sympatrically with predatory Leiocephalus lizards. Additionally, in males relatively large dewlaps seem to be selected for in a sexual context, whereas in females natural selection, for instance by other predators than Leiocephalus lizards, appears to constrain relative dewlap size.


Subject(s)
Geography , Lizards/anatomy & histology , Lizards/physiology , Phenotype , Animals , Female , Male , Selection, Genetic , Species Specificity
8.
Mol Ecol Resour ; 9(1): 299-301, 2009 Jan.
Article in English | MEDLINE | ID: mdl-21564632

ABSTRACT

We describe polymerase chain reaction primers and amplification conditions for 13 highly polymorphic microsatellite DNA loci isolated from the Dalmatian wall lizard, Podarcis melisellensis. The number of alleles per locus ranged from 12 to 41, with levels of observed heterozygosity between 0.62 and 0.94. Most of these loci were successfully cross-amplified in the closely related species P. sicula, but levels of polymorphism were always lower.

9.
J Evol Biol ; 21(5): 1438-48, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18547353

ABSTRACT

Despite repeated acquisitions of aquatic or semi-aquatic lifestyles revolving around piscivory, snakes have not evolved suction feeding. Instead, snakes use frontally or laterally directed strikes to capture prey under water. If the aquatic medium constrains strike performance because of its physical properties, we predict morphological and functional convergence in snakes that use similar strike behaviours. Here we use natricine snakes to test for such patterns of convergence in morphology and function. Our data show that frontal strikers have converged on a similar morphology characterized by narrow elongate heads with a reduced projected frontal surface area. Moreover, simple computational fluid dynamics models show that the observed morphological differences are likely biologically relevant as they affect the flow of water around the head. In general, our data suggest that the direction of evolution may be predictable if constraints are strong and evolutionary solutions limited.


Subject(s)
Biological Evolution , Colubridae/physiology , Feeding Behavior/physiology , Head/physiology , Predatory Behavior/physiology , Animals , Colubridae/anatomy & histology , Head/anatomy & histology , Models, Biological , Phylogeny
10.
J Evol Biol ; 17(5): 974-84, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15312070

ABSTRACT

Feeding specializations such as herbivory are an often cited example of convergent and adaptive evolution. However, some groups such as lizards appear constrained in the evolution of morphological specializations associated with specialized diets. Here we examine whether the inclusion of plant matter into the diet of omnivorous lacertid lizards has resulted in morphological specializations and whether these specializations reflect biomechanical compromises as expected if omnivores are constrained by functional trade-offs. We examined external head shape, skull shape, tooth structure, intestinal tract length and bite performance as previous studies have suggested correlations between the inclusion of plants into the diet and these traits. Our data show that omnivorous lacertid lizards possess modifications of these traits that allow them to successfully exploit plant material as a food source. Conversely, few indications of a compromise phenotype could be detected, suggesting that the evolution towards herbivory is only mildly constrained by functional trade-offs.


Subject(s)
Adaptation, Physiological/physiology , Biological Evolution , Feeding Behavior/physiology , Lizards/physiology , Phenotype , Analysis of Variance , Animals , Atlantic Islands , Biomechanical Phenomena , Bite Force , Cephalometry , Europe , Female , Gastrointestinal Tract/anatomy & histology , Lizards/anatomy & histology , Male , Odontometry , Phylogeny , Regression Analysis , Sex Characteristics
11.
Oecologia ; 140(1): 160-8, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15112079

ABSTRACT

As more data have become available on lizard diets in the past few decades, researchers have stressed the importance of lizards as pollinators and seed dispersers. Whereas large body size has been traditionally put forward as a major biological factor "allowing" herbivory and frugivory in lizards, a recent review of frugivory and seed dispersal by lizards showed that frugivory might be considered to be a typical island phenomenon, independent of body size. Here we show that frugivory is correlated with lizard body size among a group of syntopic Anolis species in Jamaica, with larger species eating more fruit. Additionally, the size of the fruits consumed is significantly related to lizard body size. Multiple regression analyses show that this is largely a pure body size effect as head shape or residual bite force are uncorrelated to overall fruit size. Moreover, we demonstrate that among polychrotid (Anolis-like) lizards in general, those that consume fruit are on average larger than those that do not. Lizards from the mainland were not significantly different in body size from island species. We thus suggest that fruit consumption in polychrotid lizards is mediated by large body size whether living on islands or not.


Subject(s)
Diet , Feeding Behavior , Fruit , Lizards/physiology , Animals , Body Composition , Female , Lizards/classification , Male
12.
Physiol Biochem Zool ; 74(6): 937-45, 2001.
Article in English | MEDLINE | ID: mdl-11731985

ABSTRACT

To understand the evolution of biological traits, information on the degree and origins of intraspecific variation is essential. Because adaptation can take place only if the trait shows heritable variation, it is important to know whether (at least) part of the trait variation is genetically based. We describe intra- and interindividual variation in three performance measures (sprint speed, climbing, and clambering speed) in juvenile Gallotia galloti lizards from three populations and examine how genetic, environmental (incubation temperature), and ontogenetic (age, size) effects interact to cause performance variation. Moreover, we test whether the three performance traits are intercorrelated phenotypically and genetically. Sprint speed is highest in juveniles incubated at the lowest temperature (26 degrees C) irrespective of population. Climbing speed differs among populations, and the differences persist at least until the lizards are 30 wk old. This suggests that the three populations experience different selective pressures. Moreover, mass, snout-vent length, and hindlimb length seem to affect climbing performance differently in the three populations. The variation in sprinting and climbing ability appears to be genetically based. Moreover, the two performance traits are intercorrelated and thus will not evolve independently from each other. Clambering speed (i.e., capacity to climb up an inclined mesh) varies among individuals, but the origin of this variation remains obscure.


Subject(s)
Adaptation, Physiological , Lizards/genetics , Lizards/physiology , Locomotion/genetics , Locomotion/physiology , Selection, Genetic , Age Factors , Animals , Body Constitution , Female , Genotype , Male , Phenotype , Temperature
13.
Evolution ; 55(5): 1040-8, 2001 May.
Article in English | MEDLINE | ID: mdl-11430640

ABSTRACT

Morphological and physiological considerations suggest that sprinting ability and endurance capacity put conflicting demands on the design of an animal's locomotor apparatus and therefore cannot be maximized simultaneously. To test this hypothesis, we correlated size-corrected maximal sprint speed and stamina of 12 species of lacertid lizards. Phylogenetically independent contrasts of sprint speed and stamina showed a significant negative relationship, giving support to the idea of an evolutionary trade-off between the two performance measures. To test the hypothesis that the trade-off is mediated by a conflict in morphological requirements, we correlated both performance traits with snout-vent length, size-corrected estimates of body mass and limb length, and relative hindlimb length (the residuals of the relationship between hind- and forelimb length). Fast-running species had hindlimbs that were long compared to their forelimbs. None of the other size or shape variables showed a significant relationship with speed or endurance. We conclude that the evolution of sprint capacity may be constrained by the need for endurance capacity and vice versa, but the design conflict underlying this trade-off has yet to be identified.


Subject(s)
Lizards/physiology , Locomotion/physiology , Animals , Biological Evolution , Female , Lizards/anatomy & histology , Lizards/genetics , Male , Models, Biological , Phylogeny , Species Specificity
14.
J Evol Biol ; 14(1): 46-54, 2001 Jan 08.
Article in English | MEDLINE | ID: mdl-29280576

ABSTRACT

We tested the hypothesis that an evolutionary trade-off exists between the capacity to run on level terrain and the ability to climb inclined structures in lacertid lizards. Biomechanical and physiological models of lizard locomotor performance suggest that the morphological design requirements of a ground-dwelling vs. scansorial life style are difficult to reconcile. This conflict is thought to preclude simultaneous evolution of maximal locomotor performance on level and inclined terrain. This notion has been corroborated by comparative studies on lizard species from other groups (Anolis, Chamaeleo, Sceloporus), but is not supported by our data on 13 species from the family Lacertidae. We found no indication of a negative association between maximal sprint speed of lizards over a level racetrack (indicative of ground-dwelling locomotor performance), on an inclined stony surface (indicative of climbing performance over rock faces) and inclined mesh surface (indicative of clambering performance among vegetation). Moreover, morphological characteristics associated with fast sprinting capacities (e.g. long hind limbs) apparently enhance, rather than hinder climbing and clambering performance. We conclude that in our sample of lacertid lizards, the evolution of fast sprinting capacity on level terrain has not inflicted major restrictions on climbing and clambering performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...