Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 21(1): 392, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33836696

ABSTRACT

BACKGROUND: The 37 kDa/67 kDa laminin receptor (LRP/LR) is involved in several tumourigenic-promoting processes including cellular viability maintenance and apoptotic evasion. Thus, the aim of this study was to assess the molecular mechanism of LRP/LR on apoptotic pathways in late stage (DLD-1) colorectal cancer cells upon siRNA-mediated down-regulation of LRP/LR. METHODS: siRNAs were used to down-regulate the expression of LRP/LR in DLD-1 cells which was assessed using western blotting and qPCR. To evaluate the mechanistic role of LRP/LR, proteomic analysis of pathways involved in proliferation and apoptosis were investigated. The data from the study was analysed using a one-way ANOVA, followed by a two-tailed student's t-test with a confidence interval of 95%. RESULTS: Here we show that knock-down of LRP/LR led to significant changes in the proteome of DLD-1 cells, exposing new roles of the protein. Moreover, analysis showed that LRP/LR may alter components of the MAPK, p53-apoptotic and autophagic signalling pathways to aid colorectal cancer cells in continuous growth and survival. Knock-down of LRP/LR also resulted in significant decreases in telomerase activity and telomerase-related proteins in the DLD-1 cells. CONCLUSIONS: These findings show that LRP/LR is critically implicated in apoptosis and cell viability maintenance and suggest that siRNA-mediated knock-down of LRP/LR may be a possible therapeutic strategy for the treatment of colorectal cancer.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Gene Knockdown Techniques , Receptors, Laminin/genetics , Receptors, Laminin/metabolism , Signal Transduction , Apoptosis/genetics , Cell Line, Tumor , Cell Survival/genetics , Colorectal Neoplasms/pathology , Gene Expression Profiling , Humans , Neoplasm Staging , Proteome , Proteomics/methods , RNA, Small Interfering/genetics , Telomerase/metabolism , Transcriptome , Tumor Cells, Cultured
2.
Expert Opin Ther Pat ; 29(12): 987-1009, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31722579

ABSTRACT

Introduction: The ubiquitously expressed 37 kDa/67 kDa high-affinity laminin receptor (laminin receptor precursor/laminin receptor, LRP/LR) is a protein found to play several roles within cells. The receptor is located in the nucleus, cytosol and the cell surface. LRP/LR mediates cell proliferation, cell adhesion and cell differentiation. As a result, it is seen to enhance tumor angiogenesis as well as invasion and adhesion, key steps in the metastatic cascade of cancer. Recent findings have shown that LRP/LR is involved in the maintenance of cell viability through apoptotic evasion, allowing for tumor progression. Thus, several patented therapeutic approaches targeting the receptor for the prevention and treatment of cancer have emerged.Areas covered: The several roles that LRP/LR plays in cancer progression as well as an overview of the current therapeutic patented strategies targeting LRP/LR and cancer to date.Expert opinion: Small molecule inhibitors, monoclonal antibodies and small interfering RNAs might act used as powerful tools in preventing tumor angiogenesis and metastasis through the induction of apoptosis and telomere erosion in several cancers. This review offers an overview of the roles played by LRP/LR in cancer progression, while providing novel patented approaches targeting the receptor as potential therapeutic routes for the treatment of cancer as well as various other diseases.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Receptors, Laminin/antagonists & inhibitors , Ribosomal Proteins/antagonists & inhibitors , Animals , Disease Progression , Drug Design , Humans , Molecular Targeted Therapy , Neoplasms/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Patents as Topic , Receptors, Laminin/metabolism , Ribosomal Proteins/metabolism
3.
BMC Cancer ; 18(1): 602, 2018 May 29.
Article in English | MEDLINE | ID: mdl-29843646

ABSTRACT

BACKGROUND: Cancer remains one of the leading causes of death around the world, where incidence and mortality rates are at a constant increase. Tumourigenic cells are characteristically seen to over-express the 37 kDa/67 kDa laminin receptor (LRP/LR) compared to their normal cell counterparts. This receptor has numerous roles in tumourigenesis including metastasis, angiogenic enhancement, telomerase activation, cell viability and apoptotic evasion. This study aimed to expose the role of LRP/LR on the cellular viability of early (SW-480) and late (DLD-1) stage colorectal cancer cells. METHODS: siRNA were used to down-regulate the expression of LRP/LR in SW-480 and DLD-1 cells which was assessed using western blotting. Subsequently, cell survival was evaluated using the MTT cell survival assay and confocal microscopy. Thereafter, Annexin V-FITC/PI staining and caspase activity assays were used to investigate the mechanism underlying the cell death observed upon LRP/LR knockdown. The data was analysed using Student's t-test with a confidence interval of 95%, with p-values of less than 0.05 seen as significant. RESULTS: Here we reveal that siRNA-mediated knock-down of LRP led to notable decreases in cell viability through increased levels of apoptosis, apparent by compromised membrane integrity and significantly high caspase-3 activity. Down-regulated LRP resulted in a significant increase in caspase-8 and -9 activity in both cell lines. CONCLUSIONS: These findings show that the receptor is critically implicated in apoptosis and that LRP/LR down-regulation induces apoptosis in early and late stage colorectal cancer cells through both apoptotic pathways. Thus, this study suggests that siRNA-mediated knock-down of LRP could be a possible therapeutic strategy for the treatment of early and late stage colorectal carcinoma.


Subject(s)
Apoptosis/genetics , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Receptors, Laminin/metabolism , Ribosomal Proteins/metabolism , Caspase 3/metabolism , Caspase 8/metabolism , Caspase 9/metabolism , Cell Survival/genetics , Colorectal Neoplasms/genetics , Down-Regulation , Gene Knockdown Techniques , Humans , RNA, Small Interfering/metabolism , Receptors, Laminin/genetics , Ribosomal Proteins/genetics , Tumor Cells, Cultured
4.
Exp Cell Res ; 368(1): 1-12, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29653110

ABSTRACT

The 37 kDa/67 kDa laminin receptor (LRP/LR) is over-expressed in tumor cells and has been implicated in several tumourigenic processes such as metastasis and telomerase activation, however, more importantly the focus of the present study is on the maintenance of cellular viability and the evasion of apoptosis. The aim of the study was to investigate the role of LRP/LR on the cellular viability of early (A375) and late stage (A375SM) malignant melanoma cells. Flow cytometry and western blot analysis revealed that A375SM cells contain more cell-surface and total LRP/LR levels in comparison to the A375 cells, respectively. In order to determine the effect of LRP/LR on cell viability and apoptosis, LRP was down-regulated via siRNA technology. MTT assays revealed that LRP knock-down led to significant reductions in the viability of A375 and A375SM cells. Confocal microscopy indicated nuclear morphological changes suggestive of apoptotic induction in both cell lines and Annexin-V FITC/PI assays confirmed this observation. Additionally, caspase-3 activity assays revealed that apoptosis was induced in both cell lines after siRNA-mediated down-regulation of LRP. Caspase-8 and -9 activity assays suggested that post LRP knock-down; A375 cells undergo apoptosis solely via the extrinsic pathway, while A375SM cells undergo apoptosis via the intrinsic pathway. IMPLICATIONS: siRNAs mediated LRP knock-down might represent a powerful alternative therapeutic strategy for the treatment of malignant melanoma through the induction of apoptosis.


Subject(s)
Apoptosis/genetics , Caspases/genetics , Gene Expression Regulation, Neoplastic , Melanoma/genetics , Receptors, Laminin/genetics , Cell Line, Tumor , Cell Survival/genetics , Gene Knockdown Techniques/methods , Humans , RNA, Small Interfering/genetics
5.
Mol Med ; 22: 664-673, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27611822

ABSTRACT

Cancer is a highly complex disease that has become one of the leading causes of death globally. Metastasis, a major cause of cancer deaths, requires two crucial events known as adhesion and invasion. The 37kDa/67kDa laminin receptor [laminin receptor precursor/high-affinity laminin receptor (LRP/LR)] enhances these two steps, consequently aiding in cancer progression. In this study, the role of LRP/LR in adhesion and invasion of early (SW-480 & HT-29) and late (DLD-1) stage colorectal cancer cells has been investigated. Western blotting revealed that early and late stage colorectal cancer cells contained significantly higher total LRP/LR levels compared to poorly invasive MCF-7 breast cancer control cells. Flow cytometry revealed that all three stages of colorectal cancer displayed significantly higher cell surface LRP/LR levels. Furthermore, upon treatment of the colorectal cancer cells with the anti-LRP/LR specific antibody IgG1-iS18, adhesion to laminin-1 was significantly reduced in all three stages. Each stage's invasive potential was determined using the Matrigel™ invasion assay, which revealed that invasion is significantly impeded in all three colorectal cancer stages when the cells are incubated with IgG1-iS18. In addition, Pearson's correlation coefficients propose that both total and cell surface LRP/LR levels are directly proportional to the adhesive and invasive potential of all three stages of colorectal cancer. Hence, these findings indicate the potential for the use of the IgG1-iS18 antibody as a promising therapeutic tool for colorectal cancer patients of early and late stage.

SELECTION OF CITATIONS
SEARCH DETAIL
...