Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 36: 101641, 2020 09.
Article in English | MEDLINE | ID: mdl-32863239

ABSTRACT

Endothelial cell dysfunction is an early event in cardiovascular disease and atherosclerosis. The origin of this dysfunction is unresolved, but accumulating evidence implicates damaging oxidants, including hypochlorous acid (HOCl), a major oxidant produced by myeloperoxidase (MPO), during chronic inflammation. MPO is released extracellularly by activated leukocytes and binds to extracellular molecules including fibronectin, a major matrix glycoprotein involved in endothelial cell binding. We hypothesized that MPO binding might influence the modifications induced on fibronectin, when compared to reagent HOCl, with this including alterations to the extent of damage to protein side-chains, modified structural integrity, changes to functional domains, and impact on naïve human coronary artery endothelial cell (HCAEC) adhesion and metabolic activity. The effect of increasing concentrations of the alternative MPO substrate thiocyanate (SCN-), which might decrease HOCl formation were also examined. Exposure of fibronectin to MPO/H2O2/Cl- is shown to result in damage to the functionally important cell-binding and heparin-binding fragments, gross structural changes to the protein, and altered HCAEC adhesion and activity. Differences were observed between stoichiometric, and above-stoichiometric MPO concentrations consistent with an effect of MPO binding to fibronectin. In contrast, MPO/H2O2/SCN- induced much less marked changes and limited protein damage. Addition of increasing SCN- concentrations to the MPO/H2O2/Cl- system provided protection, with 20 µM of this anion rescuing damage to functionally-important domains, decreasing chemical modification, and maintaining normal HCAEC behavior. Modulating MPO binding to fibronectin, or enhancing SCN- levels at sites of inflammation may therefore limit MPO-mediated damage, and be of therapeutic value.


Subject(s)
Peroxidase , Thiocyanates , Fibronectins/metabolism , Humans , Hydrogen Peroxide , Hypochlorous Acid , Peroxidase/metabolism , Protein Binding , Thiocyanates/pharmacology
2.
Free Radic Biol Med ; 136: 118-134, 2019 05 20.
Article in English | MEDLINE | ID: mdl-30959171

ABSTRACT

Dysfunction of endothelial cells of the artery wall is an early event in cardiovascular disease and atherosclerosis. The cause(s) of this dysfunction are unresolved, but accumulating evidence suggests that oxidants arising from chronic low-grade inflammation are contributory agents, with increasing data implicating myeloperoxidase (MPO, released by activated leukocytes), and the oxidants it generates (e.g. HOCl and HOSCN). As these are formed extracellularly and react rapidly with proteins, we hypothesized that MPO-mediated damage to the matrix glycoprotein fibronectin (FN) would modulate FN structure and function, and its interactions with human coronary artery endothelial cells (HCAEC). Exposure of human plasma FN to HOCl resulted in modifications to FN and its functional epitopes. A dose-dependent loss of methionine and tryptophan residues, together with increasing concentrations of methionine sulfoxide, and modification of the cell-binding fragment (CBF) and heparin-binding fragment (HBF) domains was detected with HOCl, but not HOSCN. FN modification resulted in a loss of HCAEC adhesion, impaired cell spreading and reduced cell proliferation. Exposure to HCAEC to HOCl-treated FN altered the expression of HCAEC genes associated with extracellular matrix (ECM) synthesis and adhesion. Modifications were detected on HCAEC-derived ECM pre-treated with HOCl, but not HOSCN, with a loss of antibody recognition of the CBF, HBF and extra-domain A. Co-localization of epitopes arising from MPO-generated HOCl and cell-derived FN was detected in human atherosclerotic lesions. Damage was also detected on FN extracted from lesions. These data support the hypothesis that HOCl, but not HOSCN, targets and modifies FN resulting in arterial wall endothelial cell dysfunction.


Subject(s)
Atherosclerosis , Endothelial Cells/metabolism , Fibronectins/metabolism , Inflammation/metabolism , Oxidants/toxicity , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/physiopathology , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/pathology , Fibronectins/drug effects , Humans , Inflammation/pathology , Inflammation/physiopathology , Oxidation-Reduction , Peroxidase/toxicity
3.
Free Radic Biol Med ; 134: 516-526, 2019 04.
Article in English | MEDLINE | ID: mdl-30716431

ABSTRACT

The extracellular matrix (ECM) influences the structure and function of the arterial wall and modulates the behavior of vascular cells through ECM-cell interactions. Alterations to the ECM have been implicated in multiple pathological processes, including atherosclerosis which is characterized by low-grade chronic inflammation and the infiltration and proliferation of smooth muscle cells during disease development. Considerable evidence has been presented for a role for inflammation-derived oxidation in atherogenesis, with enzymatically-active myeloperoxidase (MPO), elevated levels of 3-chlorotyrosine (a biomarker of MPO-catalyzed damage) and oxidized ECM materials detected in advanced human atherosclerotic lesions. Whether oxidant-modified ECM contributes to the altered behavior of smooth muscle cells is however unclear. This study therefore investigated the effects of hypochlorous acid (HOCl), a major MPO-derived oxidant, on the structure of the native ECM synthesized by human coronary artery smooth muscle cells (HCAMSCs) and whether modified ECM proteins affected HCASMC adhesion, proliferation and gene expression. Exposure of native HCASMC-derived ECM to reagent HOCl or a MPO-Cl--H2O2 system resulted in extensive ECM modifications as evidenced by the loss of antibody recognition of epitopes on type IV collagen, laminin, versican and fibronectin. Oxidation of HCASMC ECM markedly reduced HCASMC adhesion to matrix components, but facilitated subsequent proliferation in vitro. Multiple genes were upregulated in HCASMCs in response to HOCl-modified HCASMC-ECM including interleukin-6 (IL-6), fibronectin (FN1) and matrix-metalloproteinases (MMPs). These data reveal a mechanism through which inflammation-induced ECM-modification may contribute to the behavioral switching of HCASMCs, a key process in plaque formation during the development of atherosclerosis.


Subject(s)
Cell Adhesion , Cell Proliferation , Coronary Vessels/cytology , Extracellular Matrix/chemistry , Hypochlorous Acid/pharmacology , Myocytes, Smooth Muscle/cytology , Cells, Cultured , Coronary Vessels/metabolism , Extracellular Matrix/drug effects , Humans , Inflammation Mediators/metabolism , Matrix Metalloproteinases/metabolism , Myocytes, Smooth Muscle/metabolism , Oxidants/pharmacology , Tissue Inhibitor of Metalloproteinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...