Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Carbohydr Polym ; 320: 121176, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37659785

ABSTRACT

A co-metabolization of xylose and glucose by Schizophyllum commune 227E.32 wild mushroom for exopolysaccharide (EPS) production is presented. Cultivations performed with S. commune 227E.32 at different xylose concentrations demonstrated that the concentration of 50 g·L-1 of xylose achieved the highest EPS production, around 4.46 g·L-1. Scale-up in a stirred tank reactor (STR) was performed. 10 % inoculum showed the highest cost/benefit ratio regarding sugar conversion and EPS production (Y P/S = 0.90 g·g-1), achieving 1.82 g·L-1 of EPS. Isolation, purification, and characterization were conducted with EPS produced in flasks and STR. GC-MS analysis showed glucose as main monosaccharide constituents for both isolates. 13C NMR and HSQC-edited showed that both EPS isolated consisted of a ß-D-Glcp (1 â†’ 3) main chain, partially substituted at O-6 with nonreducing ß-D-Glcp ends on every third residue, similar to ß-D-glucan isolated from S. commune basidiomes known as schizophyllan (SPG). The Mw was determined by GPC to 1.5 × 106 Da (flasks) and 1.1 × 106 Da (STR). AFM topographs revealed a semi-flexible appearance of the ß-D-glucan, consistent with the triple helical structures adopted by SPG and overall contour length consistent with a high molar mass.


Subject(s)
Glucose , Schizophyllum , Xylose , Glucans , Monosaccharides
2.
Sci Rep ; 13(1): 9813, 2023 06 17.
Article in English | MEDLINE | ID: mdl-37330587

ABSTRACT

The use of terpenoid compounds in different neural-related conditions is becoming useful for several illnesses. Another possible activity of these compounds is the reduction of nervous impairment. Cannabis sativa plants are known for their concentration of two important terpenoids, the delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). CBD and THC have central peripheral activities already described and their usage in different brain diseases, such as Alzheimer's and multiple sclerosis. Aluminum (Al) is known as an important neurotoxic compound, the physiological action of Al is not known already, and in high concentrations can lead to intoxication and cause neurotoxicity. Here we evaluated the potential effect of two different doses of CBD- and THC-rich based oils against Al-induced toxicity, in the zebrafish model. We evaluated behavioral biomarkers of the novel tank test (NTT) and social preference test (SPT), and biochemical markers: the activity of the enzyme acetylcholinesterase (AChE) and the antioxidant enzymes-catalase, superoxide dismutase, and glutathione-S-transferase. CBD- and THC-based oils were able to increase the AChE activity helping the cholinergic nervous system actuate against Al toxicity which was reflected by the behavioral biomarkers changes. We concluded that the oils have a protective effect and might be used with proposals for neurological and antioxidant impairment avoidance caused by Al intoxications.


Subject(s)
Cannabidiol , Cannabis , Animals , Cannabis/chemistry , Aluminum , Antioxidants , Acetylcholinesterase , Zebrafish , Cannabidiol/pharmacology , Oils , Dronabinol/pharmacology
3.
Article in English | MEDLINE | ID: mdl-37192702

ABSTRACT

The growing consumption of psychoactive drugs, such as Venlafaxine (VFX), can negatively affect the organisms. Our main hypothesis is to investigate if VFX at human-used doses could exert effects on the behavioral, nervous, and antioxidant systems of two different organisms, zebrafish and C. elegans. We evaluated the effect of acute exposure to VFX at four concentrations (0, 37.5, 75, and 150 mg L-1) using toxicological indicator assessments. We evaluated zebrafish behavior using the novel tank test (NTT), social preference test (SPT), cortisol levels, acetylcholinesterase (AChE) activity, and antioxidant system. In C. elegans, we evaluated body bends, defecation cycles, pharyngeal pumping, AChE activity, and antioxidant system. C. elegans do not show alterations in the behavior analysis of pharyngeal pumping and body bends. Instead, the defecation cycle was increased in the highest dose of VFX. AChE activity also does not have differences compared to the control, the same occurs in lipid peroxidation rates. These results showed that nematodes were more resistant to changes when exposed to VFX. Zebrafish exposed to VFX showed changes in the NTT and SPT test, mainly in the anxiolytic pattern, suggesting that VFX alters this anxiolytic-like behavior. Comparing both organisms, we can observe that zebrafish seems to be more sensitive in this neurotoxicological evaluation.


Subject(s)
Anti-Anxiety Agents , Zebrafish , Animals , Humans , Venlafaxine Hydrochloride/toxicity , Caenorhabditis elegans , Acetylcholinesterase , Antioxidants
4.
Sci Total Environ ; 881: 163385, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37054796

ABSTRACT

Heavy metals contamination present risks to ecosystems and human health. Bioremediation is a technology that has been applied to minimize the levels of heavy metals contamination. However, the efficiency of this process varies according to several biotic and abiotic aspects, especially in environments with high concentrations of heavy metals. Therefore, microorganisms immobilization in different materials, such as biochar, emerges as an alternative to alleviate the stress that heavy metals have on microorganisms and thus improve the bioremediation efficiency. In this context, this review aimed to compile recent advances in the use of biochar as a carrier of bacteria, specifically Bacillus spp., with subsequent application for the bioremediation of soil contaminated with heavy metals. We present three different techniques to immobilize Bacillus spp. on biochar. Bacillus strains are capable of reducing the toxicity and bioavailability of metals, while biochar is a material that serves as a shelter for microorganisms and also contributes to bioremediation through the adsorption of contaminants. Thus, there is a synergistic effect between Bacillus spp. and biochar for the heavy metals bioremediation. Biomineralization, biosorption, bioreduction, bioaccumulation and adsorption are the mechanisms involved in this process. The application of biochar-immobilized Bacillus strains results in beneficial effects on the contaminated soil, such as the reduction of toxicity and accumulation of metals in plants, favoring their growth, in addition to increasing microbial and enzymatic activity in soil. However, competition and reduction of microbial diversity and the toxic characteristics of biochar are reported as negative impacts of this strategy. More studies using this emerging technology are essential to improve its efficiency, to elucidate the mechanisms and to balance positive and negative impacts, especially at the field scale.


Subject(s)
Bacillus , Metals, Heavy , Soil Pollutants , Humans , Biodegradation, Environmental , Soil , Ecosystem , Soil Pollutants/analysis , Metals, Heavy/analysis , Charcoal
5.
Environ Pollut ; 314: 120301, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36181934

ABSTRACT

Household insecticide is largely used for insect and ectoparasite control, in city centers as well as in the countryside. The pyrethroids are the most used class of insecticide, these compounds in low doses have low toxicity for mammalians, in comparison to other compounds, with insecticide effects. The contact of these compounds in sublethal doses begins in early life and many cases, in intrauterine life. Considerable diseases still with undefined etiology, such as neurodegenerative conditions, and Huntington's Disease (HD) is one of them. HD is related to overexpression of Polyglutamine (PolyQ40), its aggregation, and non-solubilization, which leads to neural, behavioral, and cognitive damage. In our study, we evaluate the effect of two sublethal doses of a prallethrin-based insecticide (P-BI), in three different Caenorhabditis elegans life stages transgenerational, neonatal, and lifespan. We evaluated the Body bends and pharyngeal pumping rate, and social feeding as behavioral biomarkers. As well as acetylcholinesterase activity (AChE), PolyQ40 aggregation, antioxidant enzymes, and heat shock protein (HSP) expression. We observe that the toxic effect of P-BI is more pronounced on transgenerational and lifespan exposure. Both sublethal doses of P-BI decreased the AChE activity and retard the HSP expression as well as increased the PolyQ40 aggregates indicating a clear biomarker for possible effect in the progression of the HD, by the environmental contamination.


Subject(s)
Huntington Disease , Insecticides , Pyrethrins , Animals , Humans , Acetylcholinesterase/metabolism , Antioxidants/metabolism , Caenorhabditis elegans , Heat-Shock Proteins , Huntington Disease/chemically induced , Insecticides/metabolism , Mammals , Pyrethrins/toxicity
6.
Sci Rep ; 12(1): 15376, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36100636

ABSTRACT

Substances from the Cannabis sativa species, especially cannabidiol (CBD) and Delta-9-tetrahydrocannabinol (Δ9-THC), have attracted medical attention in recent years. The actions of these two main cannabinoids modulate the cholinergic nervous system (CholNS) involving development, synaptic plasticity, and response to endogenous and environmental damage, as a characteristic of many neurodegenerative diseases. The dynamics of these diseases are mediated by specific neurotransmitters, such as the GABAergic nervous system (GNS) and the CholNS. The nematode Caenorhabditis elegans is an important experimental model, which has different neurotransmitter systems that coordinate its behavior and has a transgene strain that encodes the human ß-amyloid 1-42 peptide in body wall muscle, one of the main proteins involved in Alzheimer´s disease. Therefore, the objective of this study was to evaluate the protective potential of terpenoids found in C. sativa in the GNS and CholNS of C. elegans. The effect of two C. sativa oils with variations in CBD and THC concentrations on acetylcholinesterase (AChE) activity, lipid peroxidation, and behavior of C. elegans was evaluated. C. sativa oils were efficient in increasing pharyngeal pumping rate and reducing defecation cycle, AChE activity, and ROS levels in N2 strains. In the muscle:Abeta1-42 strain, mainly when using CBD oil, worm movement, body bends, and pharyngeal pumping were increased, with a reduced AChE activity. Consequently, greater investments in scientific research are needed, in addition to breaking the taboo on the use of the C. sativa plant as an alternative for medicinal use, especially in neurodegenerative diseases, which have already shown positive initial results.


Subject(s)
Cannabidiol , Cannabis , Acetylcholinesterase , Animals , Caenorhabditis elegans , Cannabidiol/pharmacology , Cannabis/chemistry , Dronabinol/pharmacology , Humans , Plant Oils
7.
Article in English | MEDLINE | ID: mdl-36167257

ABSTRACT

The endocrine disruptors (ED), even in low concentration, can change the homeostasis of an organism through the biochemical and physiological pathways; and are gaining more relevance due to their well-reported presence in the natural environment. EDs mainly affect non-target animals, which can bioaccumulate, leading to changes in metabolism. Another problem is due to several organisms that compose the aquatic biota serving as a basis of the food chain and transferring it to higher trophic levels. Here we evaluated the dietary transference of 17α-ethinylestradiol (EE2), in adult zebrafish chronically fed by EE2-bioaccumulated brine shrimp (BS). For this, we evaluated behavioral biomarkers such as the novel tank test (NTT), social preference test (SPT), mirror-induced aggressivity (MIA), and biochemical biomarkers such as acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CTL), and glutathione-S-transferase (GST) activity, cortisol, and lipid peroxidation levels in adult zebrafish. The behavioral effects can be explained by the changed effects on acetylcholinesterase activity as well as in the antioxidant system mainly affected by the high levels of EE2 identified by HPLC shown that had occurred during a dietary transfer for fish. EE2 has a potential pattern for bioaccumulation and dietary transfer in biological tissue and EE2 can affect the behavior of fish. The observed effects could be dangerous to the environment, affecting, other animals and even human health.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Acetylcholinesterase/metabolism , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Catalase/metabolism , Endocrine Disruptors/metabolism , Endocrine Disruptors/toxicity , Ethinyl Estradiol/metabolism , Ethinyl Estradiol/toxicity , Glutathione/metabolism , Humans , Hydrocortisone/metabolism , Superoxide Dismutase/metabolism , Transferases/metabolism , Water Pollutants, Chemical/metabolism , Zebrafish/metabolism
8.
Environ Toxicol Pharmacol ; 92: 103857, 2022 May.
Article in English | MEDLINE | ID: mdl-35342012

ABSTRACT

Estrogen is considered to be an endocrine disrupter and is becoming increasingly more prevalent in the daily life of humans. In some cases, estrogen is not fully metabolized by organisms and may be excreted in either its original form or in organic complex forms, into water residue systems reaching concentrations of 0.05 ng.L-1 to 75 ng.L-1. However, estrogen 17α-ethinylestradiol (EE2), which is used in oral contraceptives, is very difficult to remove from water. Here, we evaluated whether the synthetic hormone, EE2, affects the nervous system and the behavior of adult zebrafish. We established a range of concentrations (0.05, 0.5, 5, 50, and 75 ng.L-1), in addition to the control, to evaluate the effect of this compound and its bioaccumulation in zebrafish tissues. Here we show that EE2 bioaccumulates in fish and can change its behavior with an increased time in the upper zone (novel tank test) and far from the shoal segment (social preference test), demonstrating a clear anxiolytic pattern. The anxiolytic effect of EE2 can be harmful as it can affect the stress response of the species. The results presented herein reinforce the idea that the presence of EE2 in environmental water can be dangerous for non-target animals.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Biomarkers/metabolism , Estrogens/toxicity , Ethinyl Estradiol/toxicity , Water , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
9.
J Food Biochem ; 46(7): e14147, 2022 07.
Article in English | MEDLINE | ID: mdl-35347737

ABSTRACT

The harmful effects of heavy metals on organisms have not been fully described. At present, there is a close relationship between neurodegenerative diseases and copper toxicity. In addition, the copper effect on the central nervous system is followed by high levels of free radicals in different body tissues. An increase in free radical levels leads to aging-related diseases, resulting in the appearance of senile comorbidities. An increase in the consumption of natural compounds that could help to reduce this dangerous effect on organisms was observed. Pitaya (Hylocereus undatus) is a tropical fruit with great antioxidant potential and can help the organism with oxidative damage. This study evaluated the effect of H. undatus on zebrafish organisms in front of copper-induced toxicity. Therefore, the behavior, cholinergic system, antioxidant enzymes, and ALAD activity were evaluated as biomarkers. Our results highlight the great potential of Pitaya's pulp to reduce the levels of anxiety and aggressivity in fish and reduce cortisol levels. It could mediate the normal response of the cholinergic nervous system, antioxidant enzymes, and ALAD activity. Therefore, our data suggest that pitaya might improve the senile aging. PRACTICAL APPLICATIONS: The potential practical application of this study is related to the neuroprotective effect of the Hylocereus undatus microencapsulated pulp extract against metal-induced impairments. The results have shown that this extract is able to reduce the copper-induced damage modulating the antioxidant system and the cholinergic nervous system. One of the implicated potentials of use for this extract is the food supplementation to its fortification.


Subject(s)
Antioxidants , Cactaceae , Animals , Antioxidants/pharmacology , Cholinergic Agents , Copper/toxicity , Fruit , Plant Extracts/pharmacology , Zebrafish/physiology
10.
J Food Biochem ; 46(4): e13981, 2022 04.
Article in English | MEDLINE | ID: mdl-34698395

ABSTRACT

The addition of fruit to the diet is very important, and we can use nutraceutical and functional foods for this supplement. A little-known fruit is a red pitaya (Hylocereus undatus) that has been widely reported to have a high antioxidant potential. In this study, we analyzed the in vitro and in vivo antioxidant capacity of microencapsulated pitaya extract on the behavior, antioxidant, and nervous system of the nematode Caenorhabditis elegans. The worms were treated with fruit extract before and after juglone-induced stress, to determine the protective or curative effects of pitaya. We have been evaluated cholinergic, antioxidant, and behavioral biomarkers. We have evidenced that the pulp of pitaya contains antioxidant compounds and can serve as a potential nutraceutical product. In addition, the fruit extract was effective in preventing and/or reverse the stress-induced damages, even at high levels of chemical stress at all evaluated parameters. PRACTICAL APPLICATIONS: The potential applications and uses aimed by this research are related to the supplementation of foods given the antioxidant effect. Our data suggested that the effect of the pitaya fruit microencapsulated pulp extract was effective to prevent and repair the damage caused by oxidative stress. Besides the use of this microencapsulated extract can be an auxiliary in the treatment of diseases related to oxidative damage as well as promoting senescent aging. Another important use is the application of this extract as a dietary supplement to fortify the antioxidant system.


Subject(s)
Antioxidants , Cactaceae , Animals , Antioxidants/analysis , Antioxidants/pharmacology , Cactaceae/chemistry , Caenorhabditis elegans , Cholinergic Agents/analysis , Fruit/chemistry , Plant Extracts/chemistry
11.
Environ Sci Pollut Res Int ; 27(23): 29341-29351, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32440876

ABSTRACT

The synthetic estrogen, 17-α-ethinylestradiol (EE2), present in contraceptive pills, is an endocrine-disrupting chemical (EDC) that can be found in the aquatic environment. We examined the impacts of EE2 on zebrafish behavioral and physiological responses through the novel tank test (NTT), which measures anxiety-like behavior; the mirror-induced aggression (MIA) test, which measures aggressiveness; and the social preference test (SPT), which measures social cohesion. The steroid hormone levels were also measured. Here, we show that exposure to EE2 impairs stress responses by regulating the levels of specific hormones and eliciting an anxiolytic response, increasing aggression, and reducing social preference in zebrafish. In nature, these changes in behavior compromise reproduction and anti-predator behaviors, which, in turn, affects species survival. The maintenance of an intact behavioral repertoire in zebrafish is essential for their survival. Thus, our results point to the danger of environmental contamination with EE2 as it may alter the dynamics of the prey-predator relationship.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Ethinyl Estradiol , Reproduction
12.
J Inorg Biochem ; 181: 104-110, 2018 04.
Article in English | MEDLINE | ID: mdl-29150325

ABSTRACT

Ilex paraguariensis, yerba mate is a native plant from the southern region of Brazil. Studies showed that yerba mate has an antioxidant potential, which could help to reduce the risk of developing neurodegenerative diseases, as Alzheimer's Disease (AD). It's known that I. paraguariensis grows in acid soils with aluminium (Al), which is bioavailable in these soils. Al has a neurotoxic potential related with the progression of neurological disorders. This study aim was to evaluate the potential of I. paraguariensis in the etiology of AD using strains of Caenorhabditis elegans and the concentration of Al and antioxidants in the yerba mate extract. The results of the I. paraguariensis infusions made at 65°C and at 75° C show that there was no significant difference between both temperatures when preparing the tea infusion in relation to the presence of Al, methylxanthines, phenolic compounds and flavonoids. Additionally, in the case of Al, there was no difference between the extracts prepared at both temperatures. The behavioral parameters of C. elegans were altered after a long-term exposure to both factors: I. paraguariensis extract and Al. Through the antioxidant levels results along with the Al content on the Acetylcholinesterase (AChE) activity it is possible to observe that the acute and chronic exposure to Al and I. paraguariensis leaves extract are very similar to wild-type worms. Moreover, we can observe that the results in both the transgenic strains long-term exposed to I. paraguariensis leaves extract and to the Al concentrations presented an increase in the AChE activity.


Subject(s)
Aluminum/toxicity , Alzheimer Disease/etiology , Disease Models, Animal , Food Contamination , Ilex paraguariensis/chemistry , Soil Pollutants/toxicity , Teas, Herbal/adverse effects , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Aluminum/analysis , Alzheimer Disease/prevention & control , Animals , Animals, Genetically Modified , Antioxidants/analysis , Antioxidants/therapeutic use , Behavior, Animal/drug effects , Brazil , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/agonists , Caenorhabditis elegans Proteins/metabolism , Flavonoids/analysis , Flavonoids/therapeutic use , Ilex paraguariensis/growth & development , Neurotoxicity Syndromes/physiopathology , Phenols/analysis , Phenols/therapeutic use , Plant Leaves/chemistry , Plant Leaves/growth & development , Soil Pollutants/analysis , Teas, Herbal/analysis , Toxicity Tests, Acute , Toxicity Tests, Chronic , Xanthines/analysis , Xanthines/chemistry , Xanthines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...