Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 34(26): e2200625, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35446987

ABSTRACT

Tuning interactions between Dirac states in graphene has attracted enormous interest because it can modify the electronic spectrum of the 2D material, enhance electron correlations, and give rise to novel condensed-matter phases such as superconductors, Mott insulators, Wigner crystals, and quantum anomalous Hall insulators. Previous works predominantly focus on the flat band dispersion of coupled Dirac states from different twisted graphene layers. In this work, a new route to realizing flat band physics in monolayer graphene under a periodic modulation from substrates is proposed. Graphene/SiC heterostructure is taken as a prototypical example and it is demonstrated experimentally that the substrate modulation leads to Dirac fermion cloning and, consequently, the proximity of the two Dirac cones of monolayer graphene in momentum space. Theoretical modeling captures the cloning mechanism of the Dirac states and indicates that moiré flat bands can emerge at certain magic lattice constants of the substrate, specifically when the period of modulation becomes nearly commensurate with the ( 3 × 3 ) R 30 o \[(\sqrt 3 \; \times \;\sqrt 3 )R{30^o}\] supercell of graphene. The results show that epitaxial single monolayer graphene on suitable substrates is a promising platform for exploring exotic many-body quantum phases arising from interactions between Dirac electrons.

2.
Nat Commun ; 12(1): 2492, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33941773

ABSTRACT

While the discovery of two-dimensional (2D) magnets opens the door for fundamental physics and next-generation spintronics, it is technically challenging to achieve the room-temperature ferromagnetic (FM) order in a way compatible with potential device applications. Here, we report the growth and properties of single- and few-layer CrTe2, a van der Waals (vdW) material, on bilayer graphene by molecular beam epitaxy (MBE). Intrinsic ferromagnetism with a Curie temperature (TC) up to 300 K, an atomic magnetic moment of ~0.21 [Formula: see text]/Cr and perpendicular magnetic anisotropy (PMA) constant (Ku) of 4.89 × 105 erg/cm3 at room temperature in these few-monolayer films have been unambiguously evidenced by superconducting quantum interference device and X-ray magnetic circular dichroism. This intrinsic ferromagnetism has also been identified by the splitting of majority and minority band dispersions with ~0.2 eV at Г point using angle-resolved photoemission spectroscopy. The FM order is preserved with the film thickness down to a monolayer (TC ~ 200 K), benefiting from the strong PMA and weak interlayer coupling. The successful MBE growth of 2D FM CrTe2 films with room-temperature ferromagnetism opens a new avenue for developing large-scale 2D magnet-based spintronics devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...