Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(3)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37797601

ABSTRACT

The purpose of this study was to fabricate a force sensor. A novel three-dimensional carbon-based material called a carbon nano-flake ball (CNFB) was used because it exhibits a large surface-area and high electrical conductivity. Moreover, CNFB can be easily fabricated using a one-step process via microwave plasma chemical vapor deposition. In the present study, two different methods, chemical and mechanical exfoliation, were used to fabricate the CNFB thin films. CNFEs were successfully synthesized on the silicon-based composite substrate. The substrate was constructed by the Si, SiO2, and Al2O3, where Al2O3played the role of the substrate for the force sensor while SiO2was the interface layer and was removed in the process by hydrogen fluoride (HF) solution to separate Al2O3from Silicon. The experiments showed that using sol-gel catalyst coating as pretreatment precursor, results in a larger ball-size but lower deposition density of CNFB on Al2O3substrate. By using mechanical exfoliation by polyimide (PI) tape, the CNFB grown on silicon substrate can be easily exfoliated from the substrate. PI/CNFB was successfully exfoliated from the substrate with a silver-grey color at the bottom of the CNFB which is likely to be silicon carbide (SiC) from the energy dispersive spectrometer analysis. The sheet resistance of PI/CNFB was 18.3 ± 1.0 Ω sq.-1PI/CNFB exhibits a good force sensing performance with good stability after 10 times of loading-unloading cycles and a good sensitivity of 11.6 Ω g-1.

2.
ACS Appl Mater Interfaces ; 15(28): 34206-34214, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37394733

ABSTRACT

Molybdenum disulfide (MoS2) and nanocrystalline diamond (NCD) have attracted considerable attention due to their unique electronic structure and extraordinary physical and chemical properties in many applications, including sensor devices in gas sensing applications. Combining MoS2 and H-terminated NCD (H-NCD) in a heterostructure design can improve the sensing performance due to their mutual advantages. In this study, the synthesis of MoS2 and H-NCD thin films using appropriate physical/chemical deposition methods and their analysis in terms of gas sensing properties in their individual and combined forms are demonstrated. The sensitivity and time domain characteristics of the sensors were investigated for three gases: oxidizing NO2, reducing NH3, and neutral synthetic air. It was observed that the MoS2/H-NCD heterostructure-based gas sensor exhibits improved sensitivity to oxidizing NO2 (0.157%·ppm-1) and reducing NH3 (0.188%·ppm-1) gases compared to pure active materials (pure MoS2 achieves responses of 0.018%·ppm-1 for NO2 and -0.0072%·ppm-1 for NH3, respectively, and almost no response for pure H-NCD at room temperature). Different gas interaction model pathways were developed to describe the current flow mechanism through the sensing area with/without the heterostructure. The gas interaction model independently considers the influence of each material (chemisorption for MoS2 and surface doping mechanism for H-NCD) as well as the current flow mechanism through the formed P-N heterojunction.

3.
Small Methods ; 6(5): e2101546, 2022 May.
Article in English | MEDLINE | ID: mdl-35277944

ABSTRACT

Additive manufacturing (3D printing) has not been applicable to micro- and nanoscale engineering due to the limited resolution. Atomic layer deposition (ALD) is a technique for coating large areas with atomic thickness resolution based on tailored surface chemical reactions. Thus, combining the principles of additive manufacturing with ALD could open up a completely new field of manufacturing. Indeed, it is shown that a spatially localized delivery of ALD precursors can generate materials patterns. In this "atomic-layer additive manufacturing" (ALAM), the vertical resolution of the solid structure deposited is about 0.1 nm, whereas the lateral resolution is defined by the microfluidic gas delivery. The ALAM principle is demonstrated by generating lines and patterns of pure, crystalline TiO2 and Pt on planar substrates and conformal coatings of 3D nanostructures. The functional quality of ALAM patterns is exemplified with temperature sensors, which achieve a performance similar to the industry standard. This general method of multimaterial direct patterning is much simpler than standard multistep lithographic microfabrication. It offers process flexibility, saves processing time, investment, materials, waste, and energy. It is envisioned that together with etching, doping, and cleaning performed in a similar local manner, ALAM will create the "atomic-layer advanced manufacturing" family of techniques.

4.
Sci Rep ; 9(1): 2001, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30765759

ABSTRACT

The last few decades faced on the fabrication of advanced engineering materials involving also different composites. Here, we report on the fabrication of few-layer molybdenum disulfide on top of thin polycrystalline diamond substrates with a high specific surface area. In the method, pre-deposited molybdenum coatings were sulfurized in a one-zone furnace at ambient pressure. As-prepared MoS2 layers were characterized by several techniques including grazing-incidence wide-angle X-ray scattering, atomic force microscopy, scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. We found out that the initial thickness of Mo films determined the final c-axis crystallographic orientation of MoS2 layer as previously observed on other substrates. Even though it is well-known that Mo diffuses into diamond at elevated temperatures, the competing sulfurization applied effectively suppressed the diffusion and a chemical reaction between molybdenum and diamond. In particular, a Mo2C layer does not form at the interface between the Mo film and diamond substrate. The combination of diamond high specific surface area along with a controllable layer orientation might be attractive for applications, such as water splitting or water disinfection.

SELECTION OF CITATIONS
SEARCH DETAIL
...