Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Clin Cancer Res ; 29(15): 2859-2868, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37223931

ABSTRACT

PURPOSE: The majority of gastrointestinal stromal tumors (GIST) are driven by constitutively activated KIT/PDGFRA kinases and are susceptible to treatment with tyrosine kinase inhibitors. During treatment, most of these tumors will develop secondary mutations in KIT or PDGFRA inducing drug resistance, so there is an unmet need for novel therapies. We tested the efficacy of IDRX-42, a novel selective KIT inhibitor with high activity toward the most relevant KIT mutations, in 4 GIST xenograft models. EXPERIMENTAL DESIGN: NMRI nu/nu mice were transplanted with patient-derived GIST xenograft models UZLX-GIST9 (KIT:p.P577del;W557LfsX5;D820G), UZLX-GIST2B (KIT:p.A502_Y503dup), UZLX-GIST25 (KIT:p.K642E), and the cell line-derived model GIST882 (KIT:p.K642E). Mice were treated daily with vehicle (control), imatinib (100 mg/kg), sunitinib (20 mg/kg), avapritinib (5 mg/kg), or IDRX-42 (10 mg/kg, 25 mg/kg). Efficacy was assessed by tumor volume evolution, histopathology, grading of histologic response, and IHC. The Kruskal-Wallis and Wilcoxon matched-pairs tests were used for statistical analysis, with P < 0.05 considered as significant. RESULTS: IDRX-42 (25 mg/kg) caused tumor volume shrinkage in UZLX-GIST25, GIST882, and UZLX-GIST2B, with a relative decrease to 45.6%, 57.3%, and 35.1% on the last day as compared with baseline, and tumor growth delay (160.9%) compared with control in UZLX-GIST9. Compared with controls, IDRX-42 (25 mg/kg) induced a significant decrease in mitosis. In UZLX-GIST25 and GIST882 grade 2-4 histologic response with myxoid degeneration was observed in all IDRX-42 (25 mg/kg)-treated tumors. CONCLUSIONS: IDRX-42 showed significant antitumor activity in patient- and cell line-derived GIST xenograft models. The novel kinase inhibitor induced volumetric responses, decreased mitotic activity, and had antiproliferative effects. In models with KIT exon 13 mutation IDRX-42 induced characteristic myxoid degeneration.


Subject(s)
Antineoplastic Agents , Gastrointestinal Stromal Tumors , Humans , Animals , Mice , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Heterografts , Proto-Oncogene Proteins c-kit/genetics , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Enzyme Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Line, Tumor , Mutation , Drug Resistance, Neoplasm/genetics
2.
Biomedicines ; 10(4)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35453612

ABSTRACT

Despite poor response rates and dose-limiting cardiotoxicity, doxorubicin (doxo) remains the standard-of-care for patients with advanced soft tissue sarcoma. We evaluated the efficacy of two tetrapeptidic doxo prodrugs (PhAc-ALGP-Dox or CBR-049 and CBR-050) that are locally activated by enzymes expressed in the tumor environment, in ten sarcoma patient-derived xenografts. Xenograft models were selected based on expression of the main activating enzyme, i.e., thimet oligopeptidase (THOP1). Mice were either randomized to vehicle, doxo, CBR-049 and CBR-050 or control, doxo, aldoxorubicin (aldoxo) and CBR-049. Treatment efficacy was assessed by tumor volume measurement and histological assessment of ex-mouse tumors. CBR-049 showed significant tumor growth delay compared to control in all xenografts investigated and was superior compared to doxo in all but one. At the same time, CBR-049 showed comparable efficacy to aldoxo but the latter was found to have a complex safety profile in mice. CBR-050 demonstrated tumor growth delay compared to control in one xenograft but was not superior to doxo. For both experimental prodrugs, strong immunostaining for THOP1 was found to predict better antitumor efficacy. The prodrugs were well tolerated without any adverse events, even though molar doses were 17-fold higher than those administered and tolerated for doxo.

3.
Sarcoma ; 2021: 6675260, 2021.
Article in English | MEDLINE | ID: mdl-34413700

ABSTRACT

Soft tissue sarcoma (STS) is a heterogeneous family of rare mesenchymal tumors, characterized by histopathological and molecular diversity. Tissue microarray (TMA) is a tool that allows performing research in orphan diseases in a more efficient and cost-effective way. TMAs are paraffin blocks consisting of multiple small representative tissue cores from biological samples, for example, from multiple donors, diverse sites of disease, or multiple different diseases. In 2015, we began constructing TMAs using archival tumor material from STS patients. Specimens were well annotated in terms of histopathological diagnosis, treatment, and clinical follow-up of the tissue donors. Each TMA block contains duplicate or triplicate 1.0-1.5 mm tissue cores from representative tumor areas selected by sarcoma pathologists. The construction of TMAs was performed with TMA Grand Master (3DHistech). So far, we have established disease-specific TMAs from 7 STS subtypes: gastrointestinal stromal tumor (72 cases included in the array), alveolar soft part sarcoma (n = 12 + 47), clear cell sarcoma (n = 22 + 32), leiomyosarcoma (n = 55), liposarcoma (n = 42), inflammatory myofibroblastic tumor (n = 12 + 21), and alveolar rhabdomyosarcoma (n = 24). We also constructed a multisarcoma TMA covering a representative number of important histopathological subtypes on arrays for screening purposes, namely, angiosarcoma, dedifferentiated liposarcoma, pleomorphic liposarcoma, and myxoid liposarcoma, leiomyosarcoma, malignant peripheral nerve sheath tumor, myxofibrosarcoma, rhabdomyosarcoma, synovial sarcoma, and undifferentiated pleomorphic sarcoma, with 7-11 individual cases per subtype. We are currently expanding the list of TMAs with additional sarcoma entities, considering the heterogeneity of this family of tumors. Our extensive STS TMA platform is suitable for rapid and cost-effective morphological, immunohistochemical, and molecular characterization of the tumor as well as for the identification of potential novel diagnostic markers and drug targets. It is readily available for collaborative projects with research partners.

4.
Mol Cancer Ther ; 18(6): 1168-1178, 2019 06.
Article in English | MEDLINE | ID: mdl-30962320

ABSTRACT

Soft-tissue sarcomas (STS) represent a heterogeneous group of rare, malignant tumors of mesenchymal origin. Reliable in vivo sarcoma research models are scarce. We aimed to establish and characterize histologically and molecularly stable patient-derived xenograft (PDX) models from a broad variety of STS subtypes. A total of 188 fresh tumor samples from consenting patients with localized or advanced STS were transplanted subcutaneously in NMRI-nu/nu-immunodeficient mice. Once tumor growth was observed, the material was passaged to a next generation of mice. A patient-derived tumor sample was considered "successfully engrafted" whenever the sample was transplanted to passage 1. A PDX model was considered "established" when observing stable morphologic and molecular features for at least two passages. With every passage, histologic and molecular analyses were performed. Specific genomic alterations and copy-number profile were assessed by FISH and low coverage whole-genome sequencing. The tumor engraftment rate was 32% (61/188) and 188 patient samples generated a total of 32 PDX models, including seven models of myxofibrosarcoma, five dedifferentiated liposarcoma, five leiomyosarcoma, three undifferentiated pleomorphic sarcoma, two malignant peripheral nerve sheet tumor models, and single models of synovial sarcoma and some other (ultra)rare subtypes. Seventeen additional models are in early stages of engraftment (passage 1-2). Histopathologic and molecular features were compared with the original donor tumor and were stable throughout passaging. The platform is used for studies on sarcoma biology and suited for in vivo preclinical drug testing as illustrated by a number of completed and ongoing laboratory studies.


Subject(s)
Disease Models, Animal , Heterografts/pathology , Sarcoma/pathology , Sarcoma/surgery , Xenograft Model Antitumor Assays/methods , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Biopsy , Female , Genotype , Humans , Male , Mice , Mice, Nude , Middle Aged , Patients , Phenotype , Whole Genome Sequencing , Young Adult
5.
Clin Cancer Res ; 25(2): 609-618, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30274985

ABSTRACT

PURPOSE: Gastrointestinal stromal tumors (GIST) are commonly treated with tyrosine kinase inhibitors (TKI). The majority of patients with advanced GIST ultimately become resistant to TKI due to acquisition of secondary KIT mutations, whereas primary resistance is mainly caused by PDGFRA p.D842V mutation. We tested the activity of avapritinib, a potent and highly selective inhibitor of mutated KIT and PDGFRA, in three patient-derived xenograft (PDX) GIST models carrying different KIT mutations, with differential sensitivity to standard TKI.Experimental Design: NMRI nu/nu mice (n = 93) were transplanted with human GIST xenografts with KIT exon 11+17 (UZLX-GIST9 KIT 11+17 ), exon 11 (UZLX-GIST3 KIT 11 ), or exon 9 (UZLX-GIST2B KIT9 ) mutations, respectively. We compared avapritinib (10 and 30 mg/kg/once daily) versus vehicle, imatinib (50 mg/kg/bid) or regorafenib (30 mg/kg/once daily; UZLX-GIST9 KIT11+17 ); avapritinib (10, 30, 100 mg/kg/once daily) versus vehicle or imatinib [UZLX-GIST3 KIT11 ]; and avapritinib (10, 30, 60 mg/kg/once daily) versus vehicle, imatinib (50, 100 mg/kg/twice daily), or sunitinib (40 mg/kg/once daily; UZLX-GIST2B KIT9 ). RESULTS: In all models, avapritinib resulted in reduction of tumor volume, significant inhibition of proliferation, and reduced KIT signaling. In two models, avapritinib led to remarkable histologic responses, increase in apoptosis, and inhibition of MAPK-phosphorylation. Avapritinib showed superior (UZLX-GIST9 KIT 11+17 and -GIST2B KIT 9 ) or equal (UZLX-GIST3 KIT 11 ) antitumor activity to the standard dose of imatinib. In UZLX-GIST9 KIT 11+17 , the antitumor effects of avapritinib were significantly better than with imatinib or regorafenib. CONCLUSIONS: Avapritinib has significant antitumor activity in GIST PDX models characterized by different KIT mutations and sensitivity to established TKI. These data provide strong support for the ongoing clinical trials with avapritinib in patients with GIST (NCT02508532, NCT03465722).


Subject(s)
Antineoplastic Agents/pharmacology , Gastrointestinal Stromal Tumors/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-kit/genetics , Alleles , Amino Acid Substitution , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/pathology , Humans , Immunohistochemistry , Mice , Molecular Targeted Therapy , Xenograft Model Antitumor Assays
6.
Mol Cancer Ther ; 16(8): 1566-1575, 2017 08.
Article in English | MEDLINE | ID: mdl-28566438

ABSTRACT

Given the very limited efficacy of doxorubicin (doxo) in soft tissue sarcoma, there is a clear need for more active and less toxic treatments for this family of diseases. However, due to the rarity of these malignancies and lack of reliable preclinical models, development of new therapies has lagged behind. We evaluated the efficacy of PhAc-ALGP-doxorubicin (ALGP-doxo), a prodrug metabolized to doxo by peptidases present in tumor cells and/or tumor microenvironment, in a synovial sarcoma (SynSa) and two dedifferentiated liposarcoma (DDLPS) patient-derived xenograft models. Sixty-eight mice were engrafted bilaterally with human DDLPS or SynSa and randomized to control, doxo, or ALGP-doxo treatment, which were administered using an intraperitoneal minipump. Tumor volume measurement, histopathology, and Western blotting were used to assess treatment efficacy. Tumor regrowth was evaluated in a subset of mice over a period of 2 weeks after treatment cessation. Although tumor volume in the control and doxo groups increased steadily, ALGP-doxo caused tumor volume stabilization in the DDLPS xenografts and significant tumor shrinkage in the SynSa model, continuing after treatment cessation. A significant decrease in proliferation and increase in apoptosis compared with control and doxo was observed during and after treatment with ALGP-doxo in all models. In conclusion, ALGP-doxo shows considerably higher antitumoral efficacy compared with doxo in all patient-derived xenograft models tested. Administration of a 30- to 40-fold higher dose of ALGP-doxo than doxo is tolerated without significant adverse events. These results warrant further testing of this prodrug in anthracycline-sensitive and -resistant models of soft tissue sarcoma. Mol Cancer Ther; 16(8); 1566-75. ©2017 AACR.


Subject(s)
Antineoplastic Agents/therapeutic use , Doxorubicin/analogs & derivatives , Doxorubicin/therapeutic use , Prodrugs/therapeutic use , Sarcoma/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis , Cell Differentiation , Cell Proliferation , Doxorubicin/chemistry , Doxorubicin/pharmacology , Humans , Liposarcoma/drug therapy , Liposarcoma/pathology , Mice , Neoplasm Proteins/metabolism , Prodrugs/chemistry , Sarcoma/pathology , Treatment Outcome , Tumor Burden , Xenograft Model Antitumor Assays
7.
Mol Cancer Ther ; 15(12): 2845-2852, 2016 12.
Article in English | MEDLINE | ID: mdl-27777285

ABSTRACT

In the majority of gastrointestinal stromal tumors (GIST), oncogenic signaling is driven by KIT mutations. Advanced GIST is treated with tyrosine kinase inhibitors (TKI) such as imatinib. Acquired resistance to TKI is mainly caused by secondary KIT mutations, but can also be attributed to a switch of KIT dependency to another receptor tyrosine kinase (RTK). We tested the efficacy of cabozantinib, a novel TKI targeting KIT, MET, AXL, and vascular endothelial growth factor receptors (VEGFR), in patient-derived xenograft (PDX) models of GIST, carrying different KIT mutations. NMRI nu/nu mice (n = 52) were bilaterally transplanted with human GIST: UZLX-GIST4 (KIT exon 11 mutation, imatinib sensitive), UZLX-GIST2 (KIT exon 9, imatinib dose-dependent resistance), or UZLX-GIST9 (KIT exon 11 and 17 mutations, imatinib resistant). Mice were grouped as control (untreated), imatinib (50 mg/kg/bid), and cabozantinib (30 mg/kg/qd) and treated orally for 15 days. Cabozantinib resulted in significant tumor regression in UZLX-GIST4 and -GIST2 and delayed tumor growth in -GIST9. In all three models, cabozantinib inhibited the proliferative activity, which was completely absent in UZLX-GIST4 and significantly reduced in -GIST2 and -GIST9. Increased apoptotic activity was observed only in UZLX-GIST4. Cabozantinib inhibited the KIT signaling pathway in UZLX-GIST4 and -GIST2. In addition, compared with both control and imatinib, cabozantinib significantly reduced microvessel density in all models. In conclusion, cabozantinib showed antitumor activity in GIST PDX models through inhibition of tumor growth, proliferation, and angiogenesis, in both imatinib-sensitive and imatinib-resistant models. Mol Cancer Ther; 15(12); 2845-52. ©2016 AACR.


Subject(s)
Anilides/pharmacology , Antineoplastic Agents/pharmacology , Gastrointestinal Stromal Tumors/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-kit/genetics , Pyridines/pharmacology , Anilides/chemistry , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Biopsy , Cell Line, Tumor , Disease Models, Animal , Female , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/pathology , Humans , Imatinib Mesylate/pharmacology , Mice , Necrosis , Neoplasm Grading , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-kit/metabolism , Pyridines/chemistry , Signal Transduction/drug effects , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
8.
Transl Oncol ; 8(2): 112-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25926077

ABSTRACT

We evaluated the efficacy of CK6, a KIT monoclonal antibody, in a panel of human gastrointestinal stromal tumor (GIST) xenograft models. Nude mice were bilaterally transplanted with human GIST xenografts (four patient derived and two cell line derived), treated for 3 weeks, and grouped as follows: control (untreated); CK6 (40 mg/kg, 3× weekly); imatinib (50 mg/kg, twice daily); sunitinib (40 mg/kg, once daily); imatinib + CK6; sunitinib + CK6 (same doses and schedules as in the single-agent treatments). Tumor volume assessment, Western blot analysis, and histopathology were used for evaluation of efficacy. Statistical analysis was performed using Mann-Whitney U (MWU) and Wilcoxon matched-pairs tests. CK6 as a single agent only reduced tumor growth rate in the UZLX-GIST3 model (P = .053, MWU compared to control), while in none of the other GIST models an effect on tumor growth rate was observed. CK6 did not result in significant anti-proliferative or pro-apoptotic effects in any of the GIST models, and moreover, CK6 did not induce a remarkable inhibition of KIT activation. Furthermore, no synergistic effect of combining CK6 with tyrosine kinase inhibitors (TKIs) was observed. Conversely, in certain GIST xenografts, anti-tumor effects seemed to be inferior under combination treatment compared to single-agent TKI treatment. In the GIST xenografts tested, the anti-tumor efficacy of CK6 was limited. No synergy was observed on combination of CK6 with TKIs in these GIST models. Our findings highlight the importance of using relevant in vivo human tumor xenograft models in the preclinical assessment of drug combination strategies.

9.
Transl Oncol ; 7(6): 665-71, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25500074

ABSTRACT

INTRODUCTION: The rarity of dedifferentiated liposarcoma (DDLPS) and the lack of experimental DDLPS models limit the development of novel therapeutic strategies. Pazopanib (PAZ) is a tyrosine kinase inhibitor that is approved for the treatment of non-adipocytic advanced soft tissue sarcoma. The activity of this agent has not yet been properly explored in preclinical liposarcoma models nor in a randomized phase Ш clinical trial in this entity. The aim of the present study was to investigate whether PAZ had antitumor activity in DDLPS models in vivo. MATERIAL AND METHODS: We established two patient-derived DDLPS xenograft models (UZLX-STS3 and UZLX-STS5) through implantation of tumor material from sarcoma patients in athymic nude NMRI mice. An animal model of the SW872 liposarcoma cell line was also used. To investigate the efficacy of PAZ in vivo, mice bearing tumors were treated for 2 weeks with sterile water, doxorubicin (1.2 mg/kg, intraperitoneally, twice per week), PAZ [40 mg/kg, orally (p.o.), twice per day], or PAZ plus doxorubicin (same schedules as for single treatments). RESULTS: Patient-derived xenografts retained the histologic and molecular features of DDLPS. PAZ significantly delayed tumor growth by decreasing proliferation and inhibited angiogenesis in all models tested. Combining the angiogenesis inhibitor with an anthracycline did not show superior efficacy. CONCLUSION: These results suggest that PAZ has potential antitumor activity in DDLPS primarily through antiangiogenic effects and therefore should be explored in clinical trials.

10.
Clin Cancer Res ; 20(23): 6071-82, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25316817

ABSTRACT

INTRODUCTION: The PI3K signaling pathway drives tumor cell proliferation and survival in gastrointestinal stromal tumor (GIST). We tested the in vivo efficacy of three PI3K inhibitors (PI3Ki) in patient-derived GIST xenograft models. EXPERIMENTAL DESIGN: One hundred and sixty-eight nude mice were grafted with human GIST carrying diverse KIT genotypes and PTEN genomic status. Animals were dosed orally for two weeks as follows: control group (untreated); imatinib (IMA); PI3Ki (BKM120-buparlisib, BEZ235, or BYL719) or combinations of imatinib with a PI3Ki. Western blotting, histopathology, and tumor volume evolution were used for the assessment of treatment efficacy. Furthermore, tumor regrowth was evaluated for three weeks after treatment cessation. RESULTS: PI3Ki monotherapy showed a significant antitumor effect, reflected in tumor volume reduction or stabilization, inhibitory effects on mitotic activity, and PI3K signaling inhibition. The IMA+PI3Ki combination remarkably improved the efficacy of either single-agent treatment with more pronounced tumor volume reduction and enhanced proapoptotic effects over either single agent. Response to IMA+PI3Ki was found to depend on the KIT genotype and specific model-related molecular characteristics. CONCLUSION: IMA+PI3Ki has significant antitumor efficacy in GIST xenografts as compared with single-agent treatment, resulting in more prominent tumor volume reduction and enhanced induction of apoptosis. Categorization of GIST based on KIT genotype and PI3K/PTEN genomic status combined with dose optimization is suggested for patient selection for clinical trials exploring such combinations.


Subject(s)
Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Gastrointestinal Stromal Tumors/metabolism , Gastrointestinal Stromal Tumors/pathology , Phosphoinositide-3 Kinase Inhibitors , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Benzamides/administration & dosage , Disease Models, Animal , Drug Therapy, Combination , Female , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Humans , Imatinib Mesylate , Mice , Mitosis/drug effects , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Piperazines/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Pyrimidines/administration & dosage , Signal Transduction/drug effects , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
11.
Clin Sarcoma Res ; 4: 10, 2014.
Article in English | MEDLINE | ID: mdl-25132955

ABSTRACT

BACKGROUND: Acquired resistance to tyrosine kinase inhibitors (TKIs) in gastrointestinal stromal tumours (GISTs) is most commonly caused by secondary KIT or PDGFRA mutations. In this study we characterize a newly established GIST xenograft model, UZLX-GIST9, and evaluate the in vivo response of the model to standard TKIs (imatinib, sunitinib, and regorafenib). METHODS: Tumour fragments from a metastatic lesion of a GIST patient clinically progressing after treatment with imatinib, sunitinib and regorafenib were engrafted in a nude, immunodeficient mouse. Upon sequential passaging from mouse to mouse, tumour fragments were collected for histopathological and molecular characterization. The sensitivity of the model to treatment with TKIs was evaluated in 28 mice [passage 2 (n = 8), passage 4 (n = 20), 41 tumours]. Mice were grouped as follows: control (untreated), imatinib (50 mg/kg/BID), imatinib (100 mg/kg/BID), sunitinib (40 mg/kg/QD), and regorafenib (30 mg/kg/QD). After three weeks of oral treatment, tumours were collected for subsequent analysis. The efficacy of treatment was assessed by tumour volume, histopathology and Western immunoblotting. RESULTS: UZLX-GIST9 maintains the same typical morphological features and immunohistochemical characteristics as the original patient biopsy and expresses CD117 and DOG1. The KIT mutational profile (p.P577del + W557LfsX5+ D820G) remains the same as the original tissue sample originating from an intraspinal metastatic site. Three week treatment with different TKIs showed that the model is resistant to imatinib. Sunitinib induces tumour growth delay and regorafenib reduces the tumour burden by 30% as compared to control animals. While none of the TKIs had a significant effect on cell proliferation or cell survival, a remarkable increase of necrosis and significant reduction of microvessel density was observed under sunitinib and regorafenib. Western immunoblotting showed a mild reduction in KIT and AKT activation only in regorafenib treated tumours. CONCLUSIONS: We established a novel human GIST xenograft, UZLX-GIST9, harbouring KIT exon 11 and 17 mutations and maintaining the pheno-and genotype of the original tumour. UZLX-GIST9 shows different levels of response to standard TKIs. This model will help to study TKI resistance and to explore novel treatment approaches for patients with TKI-resistant GIST.

12.
Mol Cancer Ther ; 10(10): 1897-908, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21825009

ABSTRACT

The activity of the receptor tyrosine kinase KIT is crucial for gastrointestinal stromal tumor (GIST) growth and survival. Imatinib and sunitinib are very effective in advanced GIST, but have no curative potential. The observation that heat shock protein 90 (HSP90) inhibition results in KIT degradation prompted us to assess the efficacy of the HSP90 inhibitor retaspimycin hydrochloride (IPI-504) alone or in combination with imatinib or sunitinib in two GIST xenografts with distinctive KIT mutations. Nude mice were grafted with human GIST carrying KIT exon 13 (GIST-882; n = 59) or exon 11 (GIST-PSW; n = 44) mutations and dosed with imatinib (50 mg/kg twice daily), sunitinib (40 mg/kg once daily), IPI-504 (100 mg/kg 3 times per week), IPI-504 + imatinib, or IPI-504 + sunitinib. We evaluated tumor volume, proliferation and apoptosis, KIT expression and activation, as well as adverse events during treatment. Treatment with IPI-504 alone resulted in tumor regression, proliferation arrest, and induction of tumor necrosis. We documented downregulation of KIT and its signaling cascade in IPI-504-treated animals. Treatment effects were enhanced by combining IPI-504 with imatinib or sunitinib. On histologic examination, liver damage was frequently observed in animals exposed to combination treatments. In conclusion, IPI-504 shows consistent antitumor activity and induces KIT downregulation in GIST, as a single agent, and is more potent in combination with imatinib or sunitinib. The sequence of drug administration in the combination arms warrants further studies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzoquinones/pharmacology , Gastrointestinal Stromal Tumors/drug therapy , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lactams, Macrocyclic/pharmacology , Proto-Oncogene Proteins c-kit/metabolism , Animals , Benzamides , Benzoquinones/administration & dosage , Cell Growth Processes/drug effects , Cell Line, Tumor , Female , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/metabolism , Gastrointestinal Stromal Tumors/pathology , HSP90 Heat-Shock Proteins/metabolism , Humans , Imatinib Mesylate , Indoles/administration & dosage , Lactams, Macrocyclic/administration & dosage , Mice , Mice, Nude , Piperazines/administration & dosage , Proto-Oncogene Proteins c-kit/genetics , Pyrimidines/administration & dosage , Pyrroles/administration & dosage , Sunitinib , Xenograft Model Antitumor Assays
13.
BMC Cancer ; 8: 77, 2008 Mar 20.
Article in English | MEDLINE | ID: mdl-18366705

ABSTRACT

BACKGROUND: Elevated levels of matrix metalloproteinases have been found to associate with poor prognosis in various carcinomas. This study aimed at evaluating plasma levels of MMP1, MMP8 and MMP13 as diagnostic and prognostic markers of breast cancer. METHODS: A total of 208 breast cancer patients, of which 21 with inflammatory breast cancer, and 42 healthy controls were included. Plasma MMP1, MMP8 and MMP13 levels were measured using ELISA and correlated with clinicopathological characteristics. RESULTS: Median plasma MMP1 levels were higher in controls than in breast cancer patients (3.45 vs. 2.01 ng/ml), while no difference was found for MMP8 (10.74 vs. 10.49 ng/ml). ROC analysis for MMP1 revealed an AUC of 0.67, sensitivity of 80% and specificity of 24% at a cut-off value of 4.24 ng/ml. Plasma MMP13 expression could not be detected. No correlation was found between MMP1 and MMP8 levels. We found a trend of lower MMP1 levels with increasing tumour size (p = 0.07); and higher MMP8 levels with premenopausal status (p = 0.06) and NPI (p = 0.04). The median plasma MMP1 (p = 0.02) and MMP8 (p = 0.007) levels in the non-inflammatory breast cancer patients were almost twice as high as those found in the inflammatory breast cancer patients. Intriguingly, plasma MMP8 levels were positively associated with lymph node involvement but showed a negative correlation with the risk of distant metastasis. Both controls and lymph node negative patients (pN0) had lower MMP8 levels than patients with moderate lymph node involvement (pN1, pN2) (p = 0.001); and showed a trend for higher MMP8 levels compared to patients with extensive lymph node involvement (pN3) and a strong predisposition to distant metastasis (p = 0.11). Based on the hypothesis that blood and tissue protein levels are in reverse association, these results suggest that MMP8 in the tumour may have a protective effect against lymph node metastasis. CONCLUSION: In summary, we observed differences in MMP1 and MMP8 plasma levels between healthy controls and breast cancer patients as well as between breast cancer patients. Interestingly, our results suggest that MMP8 may affect the metastatic behaviour of breast cancer cells through protection against lymph node metastasis, underlining the importance of anti-target identification in drug development.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/blood , Gene Expression Regulation, Neoplastic , Lymphatic Metastasis , Matrix Metalloproteinase 1/blood , Matrix Metalloproteinase 8/blood , Adult , Aged , Aged, 80 and over , Breast Neoplasms/pathology , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Humans , Matrix Metalloproteinase 13/blood , Middle Aged , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...