Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
Biochem Pharmacol ; 61(7): 803-9, 2001 Apr 01.
Article in English | MEDLINE | ID: mdl-11274965

ABSTRACT

Three different genes encode the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R), an intracellular Ca2+ channel involved in cellular Ca2+ signaling. The IP3-binding characteristics of the various IP3R isoforms differ, but until now no specific activators or inhibitors of IP3 binding have been described. We compared the effects of oxidizing reagents, in particular thimerosal, and of cyclic ADP-ribose (cADPR) on IP3 binding to the various IP3R isoforms. We therefore expressed the N-terminal 581 amino acids of the three IP(3)R isoforms as recombinant proteins in the soluble fraction of Escherichia coli (ligand-binding sites [lbs] 1, 2, and 3) as well as the full-length IP3R1 and IP3R3 in Spodoptera frugiperda (Sf9) insect cells. Thimerosal (100 microM) stimulated IP3 binding to lbs-1 (1.4-fold) and lbs-3 (2.5-fold), but had no effect on lbs-2. Thimerosal acted on lbs-1 and lbs-3 by decreasing the Kd for IP3 binding (from 46 +/- 4 nM to 20 +/- 2 nM and from 54 +/- 21 nM to 19 +/- 7 nM for lbs-1 and -3, respectively) without modifying the Bmax. Similarly, IP3 binding to microsomes of Sf9 insect cells overexpressing the full-length IP3R1 was 1.2-fold stimulated by thimerosal. Thimerosal, however, did not affect IP3 binding to Sf9-IP3R3 microsomes, suggesting that in situ thimerosal will only directly affect ligand binding to the type 1 isoform. cADPR (50 microM) stimulated IP3 binding to Sf9-IP3R1 microsomes (1.5-fold), but not to Sf9-IP3R3 microsomes. In addition, cADPR inhibited IP3 binding to lbs-1 and lbs-2 by decreasing the affinity for IP3 1.8- and 2.8-fold, respectively, while IP3 binding to lbs-3 was not affected. These results suggest that a regulatory site for cADPR is present in the ligand-binding domain of IP3R1 and 2, but not of IP3R3.


Subject(s)
Adenosine Diphosphate Ribose/pharmacology , Calcium Channels/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Microsomes/drug effects , Receptors, Cytoplasmic and Nuclear/metabolism , Thimerosal/pharmacology , Adenosine Diphosphate Ribose/analogs & derivatives , Animals , Calcium Channels/drug effects , Cells, Cultured , Cerebellum/drug effects , Cerebellum/metabolism , Cyclic ADP-Ribose , Escherichia coli , Inositol 1,4,5-Trisphosphate Receptors , Insecta , Microsomes/metabolism , Rabbits , Receptors, Cytoplasmic and Nuclear/drug effects
2.
Eur J Neurosci ; 12(8): 2805-11, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10971622

ABSTRACT

In addition to the activation of cAMP-dependent pathways, odorant binding to its receptor can lead to inositol 1,4,5-trisphosphate (InsP3) production that may induce the opening of plasma membrane channels. We therefore investigated the presence and nature of such channels in carp olfactory cilia. Functional analysis was performed by reconstitution of the olfactory cilia in planar lipid bilayers (tip-dip method). In the presence of InsP3 (10 microM) and Ca2+ (100 nM), a current of 1.6 +/- 0.1 pA (mean +/- SEM, n = 4) was measured, using Ba2+ as charge carrier. The I/V curve displayed a slope conductance of 45 +/- 5 pS and a reversal potential of -29 mV indicating a higher selectivity for divalent cations. This current was characterized by two mean open times (3.0 +/- 0.4 ms and 42.0 +/- 2.6 ms, n = 4) and was strongly inhibited by ruthenium red (30 microM) or heparin (10 microg/mL). Importantly, the channel activity was closely dependent on the Ca2+ concentration, with the highest open probability (Po) at 100 nM Ca2+ (Po = 0.50 +/- 0.02, n = 4). Po is lower at both higher and lower Ca2+ concentrations. A structural identification of the channel was attempted by using a large panel of antibodies, raised against several InsP3 receptor (InsP3R)/Ca2+ release channel isoforms. The type 1 InsP3R was detected in carp cerebellum and whole brain, while a lower molecular mass InsP3R, which may correspond to type 2 or 3, was detected in heart, whole brain and the soma of the olfactory neurons. None of the antibodies, however, cross-reacted with olfactory cilia. Taken together, these results indicate that in carp olfactory cilia an InsP3-dependent channel is present, distinct from the classical InsP3Rs localized on intracellular membranes.


Subject(s)
Calcium Channels/metabolism , Carps/physiology , Cilia/physiology , Ion Channel Gating/physiology , Olfactory Mucosa/physiology , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Anticoagulants/pharmacology , Barium/pharmacokinetics , Blotting, Western , Calcium/metabolism , Calcium/pharmacology , Calcium Channels/analysis , Calcium Channels/immunology , Cerebellum/chemistry , Cilia/chemistry , Heparin/pharmacology , Indicators and Reagents/pharmacology , Inositol 1,4,5-Trisphosphate/physiology , Inositol 1,4,5-Trisphosphate Receptors , Ion Channel Gating/drug effects , Lipid Bilayers , Mammals , Membrane Potentials/drug effects , Membrane Potentials/physiology , Microsomes/chemistry , Microsomes/physiology , Myocardium/chemistry , Olfactory Mucosa/chemistry , Patch-Clamp Techniques , Receptors, Cytoplasmic and Nuclear/analysis , Receptors, Cytoplasmic and Nuclear/immunology , Ruthenium Red/pharmacology , Species Specificity
3.
Cell Calcium ; 27(5): 257-67, 2000 May.
Article in English | MEDLINE | ID: mdl-10859592

ABSTRACT

Binding of ATP to the inositol 1,4,5-trisphosphate receptor (IP(3)R) results in a more pronounced Ca(2+)release in the presence of inositol 1,4,5-trisphosphate (IP(3)). Two recently published studies demonstrated a different ATP sensitivity of IP(3)-induced Ca(2+)release in cell types expressing different IP(3)R isoforms. Cell types expressing mainly IP(3)R3 were less sensitive to ATP than cell types expressing mainly IP(3)R1 (Missiaen L, Parys JB, Sienaert I et al. Functional properties of the type 3 InsP(3)receptor in 16HBE14o- bronchial mucosal cells. J Biol Chem 1998;273: 8983-8986; Miyakawa T, Maeda A, Yamazawa T et al. Encoding of Ca(2+)signals by differential expression of IP(3)receptor subtypes. EMBO J 1999;18: 1303-1308). In order to investigate the difference in ATP sensitivity between IP(3)R isoforms at the molecular level, microsomes of Sf9 insect cells expressing full-size IP(3)R1 or IP(3)R3 were covalently labeled with ATP by using the photoaffinity label 8-azido[alpha-(32)P]ATP. ATP labeling of the IP(3)R was measured after immunoprecipitation of IP(3)Rs with isoform-specific antibodies, SDS-PAGE and Phosphorimaging. Unlabeled ATP inhibited covalent linking of 8-azido[alpha-(32)P]ATP to the recombinant IP(3)R1 and IP(3)R3 with an IC(50)of 1.6 microM and 177 microM, respectively. MgATP was as effective as ATP in displacing 8-azido[alpha-(32)P]ATP from the ATP-binding sites on IP(3)R1 and IP(3)R3, and in stimulating IP(3)-induced Ca(2+)release from permeabilized A7r5 and 16HBE14o- cells. The interaction of ATP with the ATP-binding sites on IP(3)R1 and IP(3)R3 was different from its interaction with the IP(3)-binding domains, since ATP inhibited IP(3)binding to the N-terminal 581 amino acids of IP(3)R1 and IP(3)R3 with an IC(50)of 353 microM and 4.0 mM, respectively. The ATP-binding sites of IP(3)R1 bound much better ATP than ADP, AMP and particularly GTP, while IP(3)R3 displayed a much broader nucleotide specificity. These results therefore provide molecular evidence for a differential regulation of IP(3)R1 and IP(3)R3 by ATP.


Subject(s)
Adenosine Triphosphate/metabolism , Calcium Channels/metabolism , Calcium/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Adenosine Triphosphate/pharmacology , Animals , Caffeine/pharmacology , Calcium Channels/drug effects , Cells, Cultured , Central Nervous System Stimulants/pharmacology , Escherichia coli , Inositol 1,4,5-Trisphosphate Receptors , Mice , Protein Isoforms , Rabbits , Receptors, Cytoplasmic and Nuclear/drug effects
4.
Biochem J ; 346 Pt 2: 275-80, 2000 Mar 01.
Article in English | MEDLINE | ID: mdl-10677344

ABSTRACT

We have expressed the N-terminal 581 amino acids of type 1 myo-inositol 1,4,5-trisphosphate receptor (IP(3)R1), IP(3)R2 and IP(3)R3 as recombinant proteins [ligand-binding site 1 (lbs-1), lbs-2, lbs-3] in the soluble fraction of Escherichia coli. These recombinant proteins contain the complete IP(3)-binding domain and bound IP(3) and adenophostin A with high affinity. Ca(2+) and calmodulin were previously found to maximally inhibit IP(3) binding to lbs-1 by 42+/-6 and 43+/-6% respectively, and with an IC(50) of approx. 200 nM and 3 microM respectively [Sipma, De Smet, Sienaert, Vanlingen, Missiaen, Parys and De Smedt (1999) J. Biol. Chem. 274, 12157-12562]. We now report that Ca(2+) inhibited IP(3) binding to lbs-3 with an IC(50) of approx. 700 nM (37+/-4% inhibition at 5 microM Ca(2+)), while IP(3) binding to lbs-2 was not affected by increasing [Ca(2+)] from 100 nM to 25 microM. Calmodulin (10 microM) inhibited IP(3) binding to lbs-3 by 37+/-4%, while IP(3) binding to lbs-2 was inhibited by only 11+/-2%. The inhibition of IP(3) binding to lbs-3 by calmodulin was dose-dependent (IC(50) approximately 2 microM). We conclude that the IP(3)-binding domains of the various IP(3)R isoforms differ in binding characteristics for IP(3) and adenophostin A, and are differentially modulated by Ca(2+) and calmodulin, suggesting that the various IP(3)R isoforms can have different intracellular functions.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Calmodulin/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Binding Sites/genetics , Calcium Channels/chemistry , Calcium Channels/genetics , Cricetinae , Inositol 1,4,5-Trisphosphate/chemistry , Inositol 1,4,5-Trisphosphate/genetics , Inositol 1,4,5-Trisphosphate Receptors , Ligands , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Rabbits , Rats , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
5.
Mol Pharmacol ; 57(3): 564-7, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10692497

ABSTRACT

Inositol-1,4,5-trisphosphate (IP(3)) releases Ca(2+) from intracellular stores by binding to its receptor (IP(3)R), a multigene family of Ca(2+)-release channels consisting of IP(3)R1, IP(3)R2, and IP(3)R3. IP(3)R1 is stimulated by low cytoplasmic Ca(2+) concentrations and inhibited by high concentrations. Discrepant reports appeared about the effect of cytoplasmic Ca(2+) on IP(3)R3, showing either a bell-shaped dependence or only a stimulatory phase with no negative feedback by high Ca(2+) concentrations. We investigated how calmodulin interfered with the feedback of cytosolic Ca(2+) on the unidirectional IP(3)-induced Ca(2+) release in permeabilized 16HBE14o- bronchial mucosal cells, where IP(3)R3 represents 93% of the receptors at the mRNA level and 81% at the protein level. Calmodulin inhibited the Ca(2+) release induced by 1.5 microM IP(3) with an IC(50) value of 9 microM. This inhibition was absolutely dependent on the presence of cytosolic Ca(2+). Ca(2+) inhibited the IP(3)R with an IC(50) value of 0.92 microM Ca(2+) in the absence of calmodulin and with an IC(50) value of 0.15 microM Ca(2+) in its presence. It is concluded that: 1) IP(3)R3 can be inhibited by calmodulin, 2) IP(3)R3 is inhibited by high Ca(2+) concentrations, and 3) calmodulin shifts the inhibitory part of the Ca(2+)-response curve toward lower Ca(2+) concentrations.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Calmodulin/pharmacology , Receptors, Cytoplasmic and Nuclear/metabolism , Respiratory Mucosa/drug effects , Animals , Cattle , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Inositol 1,4,5-Trisphosphate Receptors , Permeability , Respiratory Mucosa/metabolism
6.
Pflugers Arch ; 438(2): 154-8, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10370101

ABSTRACT

The type-3 inositol 1,4,5-trisphosphate (IP3) receptor, in contrast to the type-1 IP3 receptor (IP3R), is not stimulated by sulfhydryl oxidation and is less sensitive to adenosine 5'-triphosphate. In the present study we compared the effect of pH on the Ca2+ release induced by IP3 and cytosolic Ca2+ between IP3R3-expressing 16HBE14o- cells and IP3R1-expressing A7r5 cells. Changing pH from 6.8 to 7.5 decreased the IP3 concentration required for half-maximal stimulation of IP3R3 (EC50) 10.7-fold (from 2.14 to 0.20 microM). Similar alkalinization decreased the IP3 concentration (EC50) for stimulation of IP3R1 only 2.5-fold (from 0.87 to 0.35 microM). IP3R1 is therefore the more sensitive isoform at pH 6.8, while IP3R3 is more sensitive at pH 7.5. Stimulation and inhibition of IP3R1 and -3 by low and high cytosolic [Ca2+] respectively was observed at both pH 6.8 and 7.5. Increasing [H+] shifted the Ca2+-activation curve of IP3R1 towards higher [Ca2+] but did not affect the Ca2+ dependence of IP3R3. We conclude that IP3R1 and -3 differ markedly in their response to protons.


Subject(s)
Calcium Channels/physiology , Receptors, Cytoplasmic and Nuclear/physiology , Animals , Aorta/embryology , Calcium/metabolism , Cell Line , Hydrogen-Ion Concentration , Inositol 1,4,5-Trisphosphate/metabolism , Inositol 1,4,5-Trisphosphate Receptors , Permeability , Rats
7.
J Biol Chem ; 274(20): 13748-51, 1999 May 14.
Article in English | MEDLINE | ID: mdl-10318777

ABSTRACT

Calmodulin inhibits inositol 1,4,5-trisphosphate (IP3) binding to the IP3 receptor in both a Ca2+-dependent and a Ca2+-independent way. Because there are no functional data on the modulation of the IP3-induced Ca2+ release by calmodulin at various Ca2+ concentrations, we have studied how cytosolic Ca2+ and Sr2+ interfere with the effects of calmodulin on the IP3-induced Ca2+ release in permeabilized A7r5 cells. We now report that calmodulin inhibited Ca2+ release through the IP3 receptor with an IC50 of 4.6 microM if the cytosolic Ca2+ concentration was 0.3 microM or higher. This inhibition was particularly pronounced at low IP3 concentrations. In contrast, calmodulin did not affect IP3-induced Ca2+ release if the cytosolic Ca2+ concentration was below 0.3 microM. Calmodulin also inhibited Ca2+ release through the IP3 receptor in the presence of at least 10 microM Sr2+. We conclude that cytosolic Ca2+ or Sr2+ are absolutely required for the calmodulin-induced inhibition of the IP3-induced Ca2+ release and that this dependence represents the formation of the Ca2+/calmodulin or Sr2+/calmodulin complex.


Subject(s)
Calcium/metabolism , Calmodulin/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Animals , Aorta/embryology , Brain Chemistry , Calcium Channels/metabolism , Calmodulin/administration & dosage , Calmodulin/pharmacology , Cattle , Cell Line , Chelating Agents/pharmacology , Cytosol/metabolism , Dose-Response Relationship, Drug , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Inositol 1,4,5-Trisphosphate Receptors , Rats , Receptors, Cytoplasmic and Nuclear/metabolism , Strontium/metabolism
8.
Cell Calcium ; 25(2): 107-14, 1999 Feb.
Article in English | MEDLINE | ID: mdl-10326677

ABSTRACT

The binding of inositol 1,4,5-trisphosphate (IP3) to the IP3 receptor (IP3R) is modulated by various compounds. Until now, limited progress has been made concerning the isoform-specific effects of these modulators. In this study, we examined how [3H]IP3 binding to the three IP3R isoforms is modulated by cyclic ADP-ribose (cADPR) and by the SH-reagent thimerosal. We used rabbit cerebellum, RBL-2H3 rat mucosal mast cells and 16HBE14o- human bronchial epithelial cells as model systems for IP3R-1, -2 and -3 respectively. [3H]IP3 binding was first characterized at various pH values. We showed that [3H]IP3 binding to RBL-2H3 microsomes was more enhanced by increasing the pH from 7.4 to 8.3 than that to rabbit cerebellar microsomes. In contrast, [3H]IP3 binding to 16HBE14o- microsomes was not stimulated at alkaline pH. At pH 7.4, cADPR (50 microM) increased [3H]IP3 binding to rabbit cerebellar microsomes, RBL-2H3 and 16HBE14o- microsomes 1.5-fold, 1.3-fold and 1.8-fold respectively. The effect of cADPR on IP3 binding was abolished at pH 8.3. Scatchard analysis indicated that cADPR induced in cerebellum a decrease in IP3 affinity (KD increases from 150 nM to 252 nM) of the IP3R and a parallel increase in Bmax (from 4.8 pmol/mg to 11.1 pmol/mg). Thimerosal dose-dependently increased [3H]IP3 binding to rabbit cerebellar microsomes. The stimulatory effects of cADPR and thimerosal were not additive. Binding to cerebellar microsomes returned to control level in the presence of 500 microM thimerosal. In contrast, thimerosal (up to 500 microM) had no stimulatory effect and only a very slight, if any, inhibitory effect on [3H]IP3 binding to RBL-2H3 and 16HBE14o- microsomes respectively. These results indicate that IP3 binding to the IP3R isoforms can be differentially modulated by cADPR and thimerosal.


Subject(s)
Adenosine Diphosphate Ribose/analogs & derivatives , Calcium Channels/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Thimerosal/pharmacology , Adenosine Diphosphate Ribose/pharmacology , Animals , Bronchi/metabolism , Calcium/metabolism , Cells, Cultured , Cerebellum/metabolism , Cyclic ADP-Ribose , Dose-Response Relationship, Drug , Epithelial Cells/metabolism , Humans , Hydrogen-Ion Concentration , Inositol 1,4,5-Trisphosphate Receptors , Kinetics , Microsomes/metabolism , Mucous Membrane/metabolism , Rabbits , Rats , Tissue Distribution
9.
J Biol Chem ; 274(17): 12157-62, 1999 Apr 23.
Article in English | MEDLINE | ID: mdl-10207043

ABSTRACT

A recombinant protein (Lbs-1) containing the N-terminal 581 amino acids of the mouse type 1 inositol 1,4,5-trisphosphate receptor (IP3R-1), including the complete IP3-binding site, was expressed in the soluble fraction of E. coli. The characteristics of IP3 binding to this protein were similar as observed previously for the intact IP3R-1. Ca2+ dose-dependently inhibited IP3 binding to Lbs-1 with an IC50 of about 200 nM. This effect represented a decrease in the affinity of Lbs-1 for IP3, because the Kd increased from 115 +/- 15 nM in the absence to 196 +/- 18 nM in the presence of 5 microM Ca2+. The maximal effect of Ca2+ on Lbs-1 (5 microM Ca2+, 42.0 +/- 6.4% inhibition) was similar to the maximal inhibition observed for microsomes of insect Sf9 cells expressing full-length IP3R-1 (33.8 +/- 10.2%). Conceivably, the two contiguous Ca2+-binding sites (residues 304-450 of mouse IP3R-1) previously found by us (Sienaert, I., Missiaen, L., De Smedt, H., Parys, J.B., Sipma, H., and Casteels, R. (1997) J. Biol. Chem. 272, 25899-25906) mediate the effect of Ca2+ on IP3 binding to IP3R-1. Calmodulin also dose-dependently inhibited IP3 binding to Lbs-1 with an IC50 of about 3 microM. Maximal inhibition (10 microM calmodulin, 43.1 +/- 5.9%) was similar as observed for Sf9-IP3R-1 microsomes (35.8 +/- 8.7%). Inhibition by calmodulin occurred independently of Ca2+ and was additive to the inhibitory effect of 5 microM Ca2+ (together 74.5 +/- 5.1%). These results suggest that the N-terminal ligand-binding region of IP3R-1 contains a calmodulin-binding domain that binds calmodulin independently of Ca2+ and that mediates the inhibition of IP3 binding to IP3R-1.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Calmodulin/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Base Sequence , Binding Sites , DNA Primers , Inositol 1,4,5-Trisphosphate Receptors , Mice , Protein Binding , Recombinant Proteins/metabolism , Spodoptera
10.
Biochem Biophys Res Commun ; 255(2): 421-6, 1999 Feb 16.
Article in English | MEDLINE | ID: mdl-10049724

ABSTRACT

GAP1(IP4BP) and GAP1(m) belong to the GAP1 family of Ras GTPase-activating proteins that are candidate InsP4 receptors. Here we show they are ubiquitously expressed in human tissues and are likely to have tissue-specific splice variants. Analysis by subcellular fractionation of RBL-2H3 rat basophilic leukemia cells confirms that endogenous GAP1(IP4BP) is primarily localised to the plasma membrane, whereas GAP1(m) appears localised to the cytoplasm (cytosol and internal membranes) but not the plasma membrane. Subcellular fractionation did not indicate a specific co-localisation between membrane-bound GAP1(m) and several Ca2+ store markers, consistent with the lack of co-localisation between GAP1(m) and SERCA1 upon co-expression in COS-7 cells. This difference suggests that GAP1(m) does not reside at a site where it could regulate the ability of InsP4 to release intracellular Ca2+. As GAP1(m) is primarily localised to the cytosol of unstimulated cells it may be spatially regulated in order to interact with Ras at the plasma membrane.


Subject(s)
Carrier Proteins/metabolism , Inositol Phosphates/metabolism , Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , ras GTPase-Activating Proteins , Animals , COS Cells , Calcium-Transporting ATPases/biosynthesis , Carrier Proteins/biosynthesis , Fluorescent Antibody Technique, Indirect , GTP Phosphohydrolases/metabolism , HeLa Cells , Humans , Leukemia, Basophilic, Acute , Organ Specificity , Protein Biosynthesis , Rats , Subcellular Fractions/metabolism , Tumor Cells, Cultured
11.
Cell Calcium ; 23(1): 11-21, 1998 Jan.
Article in English | MEDLINE | ID: mdl-9570006

ABSTRACT

Prolonged stimulation of rat A7r5 aortic smooth muscle cells with 3 microM vasopressin, or of hamster DDT1 MF-2 smooth muscle cells with 10 microM bradykinin or 100 microM histamine led within 4 h to a 40-50% down-regulation of the type 1 InsP3 receptor (InsP3R-1) and of the type 3 InsP3 receptor (InsP3R-3). InsP3R down-regulation was a cell- and agonist-specific process, since several other agonists acting on PLC-coupled receptors did not change the expression level of the InsP3R isoforms in these cell types and since no agonist-induced down-regulation of InsP3Rs was observed in HeLa cells. Down-regulation of InsP3Rs was prevented by an inhibitor of proteasomal protease activity, N-acetyl-Leu-Leu-norleucinal (ALLN). The Ca2+ channel blocker verapamil (2 microM) also induced InsP3R-1 down-regulation (43%) in A7r5 cells, which was inhibited by ALLN. In A7r5 cells transiently transfected with a cDNA construct, bearing a luciferase coding sequence under control of the rat InsP3R-1 promoter, reduced luciferase activity could be demonstrated upon stimulation of cells with vasopressin or verapamil. Thus, besides enhanced protein degradation, a reduction of InsP3R promoter activity might contribute to the down-regulation of InsP3Rs in A7r5 cells. We next investigated the effect of InsP3R down-regulation on Ca2+ responses in A7r5 cells. A rightward shift in the dose-response curve for InsP3-induced Ca2+ release was observed in permeabilized monolayers of vasopressin-pretreated A7r5 cells (EC50 630 nM and 400 nM for pretreated and non-pretreated cells, respectively). The Ca2+ responses to threshold doses of vasopressin were markedly reduced in intact vasopressin-pretreated cells. We conclude that prolonged agonist-exposure leads to down-regulation of InsP3Rs in A7r5 and DDT, MF-2 smooth muscle cells. The mechanism of down-regulation likely involves proteasomal degradation and reduction of InsP3R promoter activity. Moreover, down-regulation of InsP3Rs resulted in desensitization of Ca2+ release from InsP3 sensitive stores.


Subject(s)
Calcium Channels/chemistry , Calcium Channels/metabolism , Calcium/metabolism , Down-Regulation/drug effects , Muscle, Smooth, Vascular/chemistry , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Adenosine Triphosphate/pharmacology , Animals , Aorta/cytology , Bradykinin/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels/genetics , Carbachol/pharmacology , Cricetinae , Gene Expression/drug effects , Genes, Reporter , HeLa Cells , Histamine/pharmacology , Humans , Inositol 1,4,5-Trisphosphate Receptors , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Parasympathomimetics/pharmacology , Promoter Regions, Genetic/physiology , Rats , Receptors, Cytoplasmic and Nuclear/genetics , Transfection , Vasopressins/pharmacology , Verapamil/pharmacology
12.
Biochem J ; 329 ( Pt 3): 489-95, 1998 Feb 01.
Article in English | MEDLINE | ID: mdl-9445374

ABSTRACT

Ca2+ release from intracellular stores occurs via two families of intracellular channels, each with their own specific agonist: Ins(1, 4,5)P3 for the Ins(1,4,5)P3 receptor and cyclic ADP-ribose (cADPR) for the ryanodine receptor. We now report that cADPR inhibited Ins(1, 4,5)P3-induced Ca2+ release in permeabilized A7r5 cells with an IC50 of 20 microM, and in permeabilized 16HBE14o- bronchial mucosal cells with an IC50 of 35 microM. This inhibition was accompanied by an increase in specific [3H]Ins(1,4,5)P3 binding. 8-Amino-cADPR, but not 8-bromo-cADPR, antagonized this effect of cADPR. The inhibition was prevented by a whole series of inositol phosphates (10 microM) that did not affect Ins(1,4,5)P3-induced Ca2+ release, and by micromolar concentrations of PPi and various nucleotide di- or triphosphates. We propose that cADPR must interact with a novel regulatory site on the Ins(1,4,5)P3 receptor or on an associated protein. This site is neither the Ins(1,4,5)P3-binding domain, which prefers Ins(1,4,5)P3 and only binds nucleotides and PPi in the millimolar range, nor the stimulatory adenine nucleotide binding site.


Subject(s)
Adenosine Diphosphate Ribose/analogs & derivatives , Bronchi/metabolism , Calcium/antagonists & inhibitors , Inositol 1,4,5-Trisphosphate/pharmacology , Muscle, Smooth, Vascular/metabolism , Adenine Nucleotides/metabolism , Adenosine Diphosphate Ribose/metabolism , Adenosine Diphosphate Ribose/physiology , Animals , Aorta , Binding Sites , Bronchi/cytology , Bronchi/drug effects , Caffeine/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Cell Line , Cyclic ADP-Ribose , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Inositol 1,4,5-Trisphosphate/metabolism , Inositol 1,4,5-Trisphosphate Receptors , Mucous Membrane/cytology , Mucous Membrane/drug effects , Mucous Membrane/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Rats , Receptors, Cytoplasmic and Nuclear/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism
13.
Cell Calcium ; 22(3): 151-6, 1997 Sep.
Article in English | MEDLINE | ID: mdl-9330785

ABSTRACT

The non-mitochondrial Ca2+ stores in permeabilized A7r5 cells responded to a decrease in Mg-ATP concentration with a pronounced Ca2+ release if 20 microM CoA was present. This release was rather specific for the preincubation or removal of ATP. ATP gamma S was much less effective and AMP-PNP, GTP, ITP, CTP, UTP, ADP, AMP, adenosine and adenine had no effect. CoA activated with an EC50 of 6 microM. Dephospho-CoA was a less effective cofactor and desulfo-CoA was ineffective. The release induced by Mg-ATP removal did not occur in the presence of 2% fatty acid-free bovine serum albumin and did not develop at 4 degrees C. All these findings suggest that CoA had to be acylated by endogenous fatty-acyl-CoA synthetase to become effective. Myristoyl- and palmitoyl-CoA esters were identified as the most effective cofactors for the release. Ca2+ release induced by removing Mg-ATP did not occur if the osmolality of the medium was kept constant by addition of mannitol, sucrose, KCl, MgCl2 or Mg-GTP, indicating that the decrease in tonicity was the trigger for the release. Mg-ATP plus CoA also synergized with Ca2+ release induced by a hypotonic shock imposed by diluting the medium with H2O. Osmolality changes induced by decreasing the Mg-ATP concentration were more effective in releasing Ca2+ than equal decreases in concentration of all solutes. We conclude that fatty acyl-CoA esters sensitize the hypotonically induced Ca2+ release from the non-mitochondrial Ca2+ stores.


Subject(s)
Acyl Coenzyme A/metabolism , Calcium/metabolism , Muscle, Smooth, Vascular/metabolism , Palmitoyl Coenzyme A/metabolism , Adenosine Triphosphate/metabolism , Animals , Cell Line , Hypotonic Solutions , Osmolar Concentration , Rats
14.
Biochem J ; 325 ( Pt 3): 661-6, 1997 Aug 01.
Article in English | MEDLINE | ID: mdl-9271086

ABSTRACT

The effects of a whole series of adenine nucleotides on Ins(1,4,5)P3-induced Ca2+ release were characterized in permeabilized A7r5 smooth-muscle cells. Several adenine nucleotides activated the Ins(1, 4,5)P3 receptor. It was observed that 3'-phosphoadenosine 5'-phosphoulphate, CoA, di(adenosine-5')tetraphosphate (Ap4A) and di(adenosine-5')pentaphosphate (Ap5A) were more effective than ATP. Ap4A and Ap5A also interacted with a lower EC50 than ATP. In order to find out how these adenine nucleotides affected Ins(1,4, 5)P3-induced Ca2+ release, we have measured their effect on the response of permeabilized A7r5 cells to a progressively increasing Ins(1,4,5)P3 concentration. Stimulatory ATP and Ap5A concentrations had no effect on the threshold Ins(1,4,5)P3 concentration for initiating Ca2+ release, but they stimulated Ca2+ release in the presence of supra-threshold Ins(1,4,5)P3 concentrations by increasing the co-operativity of the release process. Inhibition of the Ins(1,4,5)P3-induced Ca2+ release at higher ATP concentrations was associated with a further increase in co-operativity and also with a shift in threshold towards higher Ins(1,4,5)P3 concentrations. ATP had no effect on the non-specific Ca2+ leak in the absence of Ins(1,4,5)P3. We conclude that the adenine-nucleotide-binding site can be activated by many different adenine nucleotides. Binding of these compounds to the transducing domain of the Ins(1,4,5)P3 receptor increases the efficiency of transmitting Ins(1,4,5)P3 binding to channel opening. The inhibition by high ATP concentrations is exerted at a different site, related to Ins(1,4,5)P3 binding.


Subject(s)
Adenine Nucleotides/pharmacology , Calcium/metabolism , Inositol 1,4,5-Trisphosphate/pharmacology , Animals , Cell Line , Rats
15.
Biochem J ; 323 ( Pt 1): 123-30, 1997 Apr 01.
Article in English | MEDLINE | ID: mdl-9173870

ABSTRACT

Inositol 1,4,5-trisphosphate (InsP3)-induced Ca2+ release from intracellular stores is generally assumed to be a 'quantal' process because low InsP3 concentrations mobilize less Ca2+ than high concentrations and a submaximal concentration does not release all the InsP3-mobilizable Ca2+. However, some recent reports questioned the generally accepted view that a low dose of InsP3 is unable to empty the whole store. We have now challenged the stores of permeabilized A7r5 cells in InsP3 for much longer periods than previously reported, to assess directly whether the slow phase of the release would empty the whole store (a non-quantal response) or only a fraction of it (a quantal response). Addition of a maximal [InsP3] at the end of a prolonged (92 min) stimulation with a submaximal [InsP3] resulted in additional Ca2+ release. Experiments in which the stores were challenged with different submaximal InsP3 concentrations for long time periods revealed that a lower [InsP3] never released the same amount of Ca2+ as a higher [InsP3]. This quantal pattern of Ca2+ release occurred both at 25 degrees C and at 4 degrees C. There was a time-dependent increase in the fraction of Ca2+ recruited by the lower compared with the higher [InsP3]. This recruitment of Ca2+ persisted if the [InsP3] was decreased, but was largely prevented by palmitoyl-CoA, a potent blocker of the luminal Ca2+ translocation between individual store units. ATP, in the presence of InsP3, released Ca2+ under conditions permitting the recruitment of no additional InsP3 receptors, indicating that an all-or-none emptying of a fraction of the stores cannot be the only mechanism responsible for quantal Ca2+ release in A7r5 cells. We conclude that some of the previously published evidence for a non-quantal Ca2+ release pattern should be reinterpreted.


Subject(s)
Calcium/metabolism , Inositol 1,4,5-Trisphosphate/pharmacology , Adenosine Triphosphate/metabolism , Animals , Cell Membrane Permeability , Cells, Cultured , Cold Temperature , Kinetics , Palmitoyl Coenzyme A/metabolism , Rats
16.
Biochem J ; 322 ( Pt 2): 575-83, 1997 Mar 01.
Article in English | MEDLINE | ID: mdl-9065779

ABSTRACT

Previous reports suggested the expression of four or five different Ins(1,4,5)P3 receptor [Ins(1,4,5)P3R] isoforms in mouse cells [Ross, Danoff, Schell, Snyder and Ullrich (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 4265-4269; De Smedt, Missiaen, Parys, Bootman, Mertens, Van Den Bosch and Casteels (1994) J. Biol. Chem. 269, 21691-21698]. To explore this diversity further, we have isolated and sequenced partial clones of two Ins(1,4,5)P3R mRNAs from the mouse embryonic C3H10T1/2 cell line. These clones showed between 94.2 and 94.9% sequence identity with the corresponding rat Ins(1,4,5)P3R-II and Ins(1,4,5)P3R-III isoforms. Based on these newly obtained sequences we have determined the relative expression of the different Ins(1,4,5)P3R mRNAs in cultured cells and in animal tissues of mouse origin by a ratio reverse transcriptase polymerase chain reaction (RT-PCR). Ins(1,4,5)P3R-I was very prominent in brain and cerebellum and Ins(1,4,5)P3R-II in epithelia such as kidney as well as in both cardiac and skeletal muscle. Ins(1,4,5)P3R-III was highly expressed in all cultured cell types and in tissues with high cell turnover, e.g. testis. The prominent expression of Ins(1,4,5)P3R-I and Ins(1,4,5)P3R-III in A7r5 and C3H10T1/2 cells respectively was confirmed by immunoblot analysis and was compatible with a lower threshold for Ins(1,4,5)P3-induced Ca2+ release in the former cell type. Screening of a large number of mouse cell lines and tissues revealed the presence of Ins(1,4,5)P3R-I as well as of the Ins(1,4,5)P3R-II and Ins(1,4,5)P3R-III isoforms which were identified in the present study, but in contrast with previous reports there was no evidence for more isoform diversity.


Subject(s)
Calcium Channels/genetics , Genetic Variation , Inositol 1,4,5-Trisphosphate , Receptors, Cytoplasmic and Nuclear/genetics , Animals , Base Sequence , Calcium/metabolism , Calcium Channels/classification , Cell Line , Cerebellum/chemistry , Cloning, Molecular , DNA Primers , Embryo, Mammalian/cytology , Inositol 1,4,5-Trisphosphate Receptors , Mice , Microsomes/chemistry , Molecular Sequence Data , Polymerase Chain Reaction , RNA-Directed DNA Polymerase , Receptors, Cytoplasmic and Nuclear/classification , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Tissue Distribution
17.
Cell Calcium ; 22(6): 475-86, 1997 Dec.
Article in English | MEDLINE | ID: mdl-9502197

ABSTRACT

RBL-2H3 rat basophilic leukemia cells were homogenized and fractionated. A fraction F3 obtained by differential centrifugation was 6-fold enriched in [3H]-inositol 1,4,5-trisphosphate (InsP3) binding activity, while the NADH-cytochrome c oxidoreductase and sulphatase-C activities were only 3.8- and 2.9-fold enriched, respectively. Furthermore, the three InsP3 receptor (InsP3R) isoforms, two sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) isoforms (2b and 3) as well as four Ca2+ binding proteins (calreticulin, calnexin, protein disulfide isomerase (PDI) and BiP), were present in this fraction. Fraction F3 was, therefore, further purified on a discontinuous sucrose density gradient, and the 3 resulting fractions were analyzed. The InsP3 binding sites were distributed over the gradient and did not co-migrate with the RNA. We examined the relative content of the three InsP3R isoforms, of both SERCA2b and 3, as well as that of the four Ca2+ binding proteins in fraction F3 and the sucrose density gradient fractions. InsP3R-1 and InsP3R-2 showed a similar distribution, with the highest level in the light and intermediate density fractions. InsP3R-3 distributed differently, with the highest level in the intermediate density fraction. Both SERCA isoforms distributed similarly to InsP3R-1 and InsP3R-2. SERCA3 was present at a very low level in the high density fraction. Calreticulin and BiP showed a pattern similar to that of InsP3R-1 and InsP3R-2 and the SERCAs. PDI was clearly enriched in the light density fraction while calnexin was broadly distributed. These results indicate a heterogeneous distribution of the three InsP3R isoforms, the two SERCA isoforms and the four Ca2+ binding proteins investigated. This heterogeneity may underlie specialization of the Ca2+ stores and the subsequent initiation of intracellular Ca2+ signals.


Subject(s)
Basophils/metabolism , Calcium Channels/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Transporting ATPases/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Cell Fractionation , Cell Membrane , Centrifugation , Centrifugation, Density Gradient , Inositol 1,4,5-Trisphosphate Receptors , Leukemia , Rabbits , Rats , Sucrose , Tumor Cells, Cultured
18.
J Biol Chem ; 271(43): 27005-12, 1996 Oct 25.
Article in English | MEDLINE | ID: mdl-8900188

ABSTRACT

To study the Ca2+ regulation of the inositol 1,4,5-trisphosphate receptor (InsP3R) at the molecular level, we expressed various cytosolic and luminal regions of the mouse type I InsP3R as glutathione S-transferase fusion proteins. 45Ca2+ and ruthenium red overlay studies and Stains-all spectra and staining revealed both a cytosolic and a luminal Ca2+ binding site. The luminal Ca2+ binding site was mapped to the nonconserved acidic subregion of the luminal loop between amino acids 2463 and 2528. A K0.5 of 0.3 microM and a Hill coefficient of 1.1 were determined by 45Ca2+ overlay by quantification of 45Ca2+ binding on blots. The cytosolic Ca2+ binding site was localized in a region just preceding the transmembrane domain M1. The Ca2+ binding was mapped to a 23-amino acid stretch between amino acids 2124 and 2146. This cytosolic region showed a single high affinity site for Ca2+, with a K0.5 of 0. 8 microM and a Hill coefficient of 1.0. Neither of the identified Ca2+ binding regions contained an EF-hand motif. We conclude that the type I InsP3R has at least two quite distinct types of Ca2+ binding sites, which are localized in different structural regions of the protein.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Cytosol/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Amino Acid Sequence , Animals , Binding Sites , Calcium Channels/genetics , Calcium Channels/isolation & purification , Cloning, Molecular , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Inositol 1,4,5-Trisphosphate Receptors , Mice , Molecular Sequence Data , Protein Binding , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/isolation & purification , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ruthenium Red/metabolism , Sequence Homology, Amino Acid
19.
J Biol Chem ; 271(9): 4601-4, 1996 Mar 01.
Article in English | MEDLINE | ID: mdl-8617719

ABSTRACT

Osmotic cell swelling induced by hypotonic stress is associated with a rise in intracellular Ca2+ concentration, which is at least partly due to a release of Ca2+ from internal stores. Since osmotic influx of water dilutes the cytoplasmic milieu, we have investigated how nonmitochondrial Ca2+ stores in permeabilized A7r5 cells respond to a reduction in cytoplasmic tonicity. We now present experimental evidence for a direct Ca2+ release from the stores when exposed to a hypotonic medium. The release is graded, but does not occur through the inositol trisphosphate or the ryanodine receptor. Ca2+ seems to be released through the passive leak pathway, and this phenomenon can be partially inhibited by divalent cations in the following order of potency: Ni2+ = Co2+ > Mn2+ > Mg2+ > Ba2+. This release also occurs in intact A7r5 cells. This novel mechanism of hypotonically induced Ca2+ release is therefore an inherent property of the stores, which can occur in the absence of second messengers. Intracellular stores can therefore act as osmosensors.


Subject(s)
Calcium/metabolism , Cations, Divalent/pharmacology , Animals , Aorta , Cell Line , Cell Membrane Permeability , Cytoplasm/metabolism , Hypotonic Solutions , Kinetics , Muscle, Smooth, Vascular , Rats , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL