Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 277(15): 12649-56, 2002 Apr 12.
Article in English | MEDLINE | ID: mdl-11815603

ABSTRACT

In C6 glioma cells, the sphingolipid second messenger ceramide potentiates expression of inducible nitric-oxide synthase (iNOS) induced by tumor necrosis factor alpha (TNF-alpha) without affecting GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme in the biosynthesis of 6(R)-5,6,7,8-tetrahydrobiopterin (BH(4)), a cofactor required for iNOS activity. TNF-alpha also stimulates sphingosine kinase, the enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate (SPP), a further metabolite of ceramide. Several clones of C6 cells, expressing widely varying levels of sphingosine kinase, were used to examine the role of SPP in regulation of GTPCH and BH(4) biosynthesis. Overexpression of sphingosine kinase, with concomitant increased endogenous SPP levels, potentiated the effect of TNF-alpha on GTPCH expression and activity and BH(4) biosynthesis. In contrast, enforced expression of sphingosine kinase had no effect on iNOS expression or NO formation. Furthermore, N,N-dimethylsphingosine, a potent sphingosine kinase inhibitor, completely eliminated the increased GTPCH activity and expression induced by TNF-alpha. Surprisingly, we found that, although C6 cells can secrete SPP, which is enhanced by TNF-alpha, treatment of C6 cells with exogenous SPP or dihydro-SPP had no affect on BH(4) biosynthesis. However, both SPP and dihydro-SPP markedly stimulated ERK 1/2 in C6 cells, which express cell surface SPP receptors. Interestingly, although this ERK activation was blocked by PD98059, which also reduced cellular proliferation induced by enforced expression of sphingosine kinase, PD98059 had no effect on GTPCH activity. Collectively, these results suggest that only intracellularly generated SPP plays a role in regulation of GTPCH and BH(4) levels.


Subject(s)
Biopterins/analogs & derivatives , Biopterins/biosynthesis , Glioma/metabolism , Phosphotransferases (Alcohol Group Acceptor)/physiology , Tumor Necrosis Factor-alpha/physiology , Animals , Base Sequence , DNA Primers , Enzyme Activation , GTP Cyclohydrolase/genetics , GTP Cyclohydrolase/metabolism , Glioma/enzymology , Glioma/pathology , Mice , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type II , Phosphorylation , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...