Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Geroscience ; 46(1): 517-530, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38153668

ABSTRACT

Treatment of Alzheimer's disease (AD) has been limited to managing of symptoms or anti-amyloid therapy with limited results and uncertainty. Seeking out new therapies that can reverse the effects of this devastating disease is important. Hyperbaric oxygen (HBO) therapy could be such a candidate as it has been shown to improve brain function in certain neurological conditions. Furthermore, the role sex plays in the vulnerability/resilience to AD remains equivocal. An understanding of what makes one sex more vulnerable to AD could unveil new pathways for therapy development. In this study, we investigated the effects of HBO on cognitive, motor, and affective function in a mouse model of AD (5xFAD) and assessed protein oxidation in peripheral tissues as a safety indicator. The motor and cognitive abilities of 5xFAD mice were significantly impaired. HBO therapy improved cognitive flexibility and associative learning of 5xFAD females but not males, but HBO had no effect other aspects of cognition. HBO also reversed AD-related declines in balance but had no impact on gait and anxiety-like behavior. HBO did not affect body weights or oxidative stress in peripheral tissues. Our study provides further support for HBO therapy as a potential treatment for AD and emphasizes the importance of considering sex as a biological variable in therapeutic development. Further investigations into the underlying mechanisms of HBO's sex-specific responses are warranted, as well as optimizing treatment protocols for maximum benefits.


Subject(s)
Alzheimer Disease , Hyperbaric Oxygenation , Male , Mice , Animals , Female , Alzheimer Disease/drug therapy , Cognition , Oxygen , Oxidative Stress/physiology
2.
Psychopharmacology (Berl) ; 240(6): 1343-1358, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37127834

ABSTRACT

Recreational and medical use of stimulants among young adults have gained popularity in the United States over the last decade and their use may increase vulnerability to brain biochemical changes and addictive behaviors. The long-term effects of chronic stimulant exposure in later adulthood have not been fully elucidated.Our study investigated whether chronic exposure to methamphetamine (METH), at a dose designed to emulate human therapeutic dosing for ADHD, would promote biochemical alterations and affect sensitivity to the rewarding effects of subsequent METH dosing.Groups of 3.5-month-old male and female C57BL/6J mice were administered non-contingent intraperitoneal injections of either saline or METH (1.4 mg/kg) twice a day for 1 month (5 days/week). METH (0.5 mg/kg)-induced conditioned place preference (CPP) was tested in mice to determine the effects of previous METH exposure on reward-related behavior. Mice were randomly assigned to Experiment I (males and females) or Experiment II (females only) in which CPP testing was respectively performed either 0.5 or 5 months after the end of METH injections, at ~5 or 10 months old respectively. The midbrain and striatum, regions involved in reward circuit, were assessed for markers associated with neurotoxicity, dopaminergic function, neuroinflammation and epigenetic changes after behavioral testing.Previous exposure to chronic METH did not have significant short-term effects on CPP response but led to a decreased CPP response in 10-month-old females. Previous exposure to METH induced some short-term changes to biochemical markers measured in a brain region and sex-dependent manner, while long-term changes were only observed with GFAP and KDM5C.In conclusion, our data suggest sex- and post-exposure duration-dependent outcomes and warrant further exploration of the long-term neurobehavioral consequences of psychostimulant use in both sexes.


Subject(s)
Central Nervous System Stimulants , Methamphetamine , Humans , Mice , Male , Female , Animals , Adult , Infant , Conditioning, Operant , Mice, Inbred C57BL , Reward
3.
Horm Behav ; 144: 105201, 2022 08.
Article in English | MEDLINE | ID: mdl-35653830

ABSTRACT

Genistein possesses estrogenic activity and has been considered a potential replacement for estrogen replacement therapy after menopause. In the current study, we investigated the neuroprotective effects of dietary genistein at varied lengths of estrogen deprivation in middle-aged ovariectomized Sprague-Dawley rats under ischemic conditions. Two weeks of treatment with dietary genistein at 42 mg/kg but not 17ß-estradiol implants improved cognitive flexibility (Morris water maze test) after short-term estrogen deprivation (2 weeks) but not long-term estrogen deprivation (12 weeks). 17ß-estradiol implants but not dietary genistein improved locomotor asymmetry (cylinder test) after long-term but not short-term estrogen deprivation. Dietary genistein but not 17ß-estradiol implant improved early phase motor learning (rotarod test) after long-term estrogen deprivation. Neither 17ß-estradiol implant nor dietary genistein reduced infarct size after either short-term or long-term estrogen deprivation. Genistein, however, reduced ionized calcium-binding adaptor molecule-1 (Iba1) expression, a marker of brain inflammation, at the ipsilateral side of stroke injury after short-term but not long-term estrogen deprivation. This study suggests that the neuroprotective effects of dietary genistein on motor and cognitive functions are distinctly influenced by the length of estrogen deprivation following focal ischemia. SIGNIFICANCE: There is an increasing postmenopausal population opting for homeopathic medicines for the management of menopausal symptoms due to the perceived distrust in estrogen use as hormone replacement. Basic and clinical studies support the notion that early, but not delayed, hormone replacement after menopause is beneficial. Furthermore, evidence suggests that delaying hormone replacement augments the detrimental, rather than the beneficial effects of estrogens. Because of the active consideration of soy isoflavones including genistein as alternatives to estrogen replacement, it is necessary to understand the ramifications of soy isoflavones use when their administration is begun at various times after menopause.


Subject(s)
Genistein , Neuroprotective Agents , Animals , Cognition , Estradiol/pharmacology , Estradiol/therapeutic use , Estrogens/metabolism , Estrogens/pharmacology , Female , Genistein/pharmacology , Humans , Ischemia/drug therapy , Ovariectomy , Rats , Rats, Sprague-Dawley
4.
Psychopharmacology (Berl) ; 239(7): 2331-2349, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35347365

ABSTRACT

RATIONALE: Recreational and medical use of stimulants is increasing, and their use may increase susceptibility to aging and promote neurobehavioral impairments. The long-term consequences of these psychostimulants and how they interact with age have not been fully studied. OBJECTIVES: Our study investigated whether chronic exposure to the prototypical psychostimulant, methamphetamine (METH), at doses designed to emulate human therapeutic dosing, would confer a pro-oxidizing redox shift promoting long-lasting neurobehavioral impairments. METHODS: Groups of 4-month-old male and female C57BL/6 J mice were administered non-contingent intraperitoneal injections of either saline or METH (1.4 mg/kg) twice a day for 4 weeks. Mice were randomly assigned to one experimental group: (i) short-term cognitive assessments (at 5 months), (ii) long-term cognitive assessments (at 9.5 months), and (ii) longitudinal motor assessments (at 5, 7, and 9 months). Brain regions were assessed for oxidative stress and markers of neurotoxicity after behavior testing. RESULTS: Chronic METH exposure induced short-term effects on associative memory, gait speed, dopamine (DA) signaling, astrogliosis in females, and spatial learning and memory, balance, DA signaling, and excitotoxicity in males. There were no long-term effects of chronic METH on cognition; however, it decreased markers of excitotoxicity in the striatum and exacerbated age-associated motor impairments in males. CONCLUSION: In conclusion, cognitive and motor functions were differentially and sex-dependently affected by METH exposure, and oxidative stress did not seem to play a role in the observed behavioral outcomes. Future studies are necessary to continue exploring the long-term neurobehavioral consequences of drug use in both sexes and the relationship between aging and drugs.


Subject(s)
Central Nervous System Stimulants , Methamphetamine , Animals , Central Nervous System Stimulants/pharmacology , Corpus Striatum , Dopamine/pharmacology , Female , Male , Mice , Mice, Inbred C57BL , Sex Characteristics
5.
Endocrinology ; 162(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34467976

ABSTRACT

Neurodegenerative diseases cause severe impairments in cognitive and motor function. With an increasing aging population and the onset of these diseases between 50 and 70 years, the consequences are bound to be devastating. While age and longevity are the main risk factors for neurodegenerative diseases, sex is also an important risk factor. The characteristic of sex is multifaceted, encompassing sex chromosome complement, sex hormones (estrogens and androgens), and sex hormone receptors. Sex hormone receptors can induce various signaling cascades, ranging from genomic transcription to intracellular signaling pathways that are dependent on the health of the cell. Oxidative stress, associated with aging, can impact the health of the cell. Sex hormones can be neuroprotective under low oxidative stress conditions but not in high oxidative stress conditions. An understudied sex hormone receptor that can induce activation of oxidative stress signaling is the membrane androgen receptor (mAR). mAR can mediate nicotinamide adenine dinucleotide-phosphate (NADPH) oxidase (NOX)-generated oxidative stress that is associated with several neurodegenerative diseases, such as Alzheimer disease. Further complicating this is that aging can alter sex hormone signaling. Prior to menopause, women experience more estrogens than androgens. During menopause, this sex hormone profile switches in women due to the dramatic ovarian loss of 17ß-estradiol with maintained ovarian androgen (testosterone, androstenedione) production. Indeed, aging men have higher estrogens than aging women due to aromatization of androgens to estrogens. Therefore, higher activation of mAR-NOX signaling could occur in menopausal women compared with aged men, mediating the observed sex differences. Understanding of these signaling cascades could provide therapeutic targets for neurodegenerative diseases.


Subject(s)
Gonadal Steroid Hormones/physiology , Neurodegenerative Diseases/etiology , Oxidative Stress/physiology , Sex Characteristics , Aging/physiology , Androgens/metabolism , Androgens/physiology , Animals , Estrogens/metabolism , Estrogens/physiology , Female , Humans , Male , Neurodegenerative Diseases/epidemiology , Neurodegenerative Diseases/therapy
6.
Antioxidants (Basel) ; 9(6)2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32630431

ABSTRACT

This study determined whether antioxidant supplementation is a viable complement to exercise regimens in improving cognitive and motor performance in a mouse model of Alzheimer's disease risk. Starting at 12 months of age, separate groups of male and female mice expressing human Apolipoprotein E3 (GFAP-ApoE3) or E4 (GFAP-ApoE4) were fed either a control diet or a diet supplemented with vitamins E and C. The mice were further separated into a sedentary group or a group that followed a daily exercise regimen. After 8 weeks on the treatments, the mice were administered a battery of functional tests including tests to measure reflex and motor, cognitive, and affective function while remaining on their treatment. Subsequently, plasma inflammatory markers and catalase activity in brain regions were measured. Overall, the GFAP-ApoE4 mice exhibited poorer motor function and spatial learning and memory. The treatments improved balance, learning, and cognitive flexibility in the GFAP-ApoE3 mice and overall the GFAP-ApoE4 mice were not responsive. The addition of antioxidants to supplement a training regimen only provided further benefits to the active avoidance task, and there was no antagonistic interaction between the two interventions. These outcomes are indicative that there is a window of opportunity for treatment and that genotype plays an important role in response to interventions.

7.
Aging Dis ; 11(1): 93-107, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32010484

ABSTRACT

HIV infects the central nervous system and causes HIV/neuroAIDS, which is predominantly manifested in the form of mild cognitive and motor disorder in the era of combination antiretroviral therapy. HIV Tat protein is known to be a major pathogenic factor for HIV/neuroAIDS through a myriad of direct and indirect mechanisms. However, most, if not all of studies involve short-time exposure of recombinant Tat protein in vitro or short-term Tat expression in vivo. In this study, we took advantage of the doxycycline-inducible brain-specific HIV-1 Tat transgenic mouse model, fed the animals for 12 months, and assessed behavioral, pathological, and epigenetic changes in these mice. Long-term Tat expression led to poorer short-and long-term memory, lower locomotor activity and impaired coordination and balance ability, increased astrocyte activation and compromised neuronal integrity, and decreased global genomic DNA methylation. There were sex- and brain region-dependent differences in behaviors, pathologies, and epigenetic changes resulting from long-term Tat expression. All these changes are reminiscent of accelerated aging, raising the possibility that HIV Tat contributes, at least in part, to HIV infection-associated accelerated aging in HIV-infected individuals. These findings also suggest another utility of this model for HIV infection-associated accelerated aging studies.

8.
Behav Brain Res ; 378: 112278, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31629836

ABSTRACT

Stroke leads to devastating outcomes including impairments of sensorimotor and cognitive function that may be long lasting. New intervention strategies are needed to overcome the long-lasting effects of ischemic injury. Previous studies determined that treatment with 5-methoxyindole-2-carboxylic acid (MICA) conferred chemical preconditioning and neuroprotection against stroke. The purpose of the current study was to determine whether the preconditioning can lead to functional improvements after stroke (done by transient middle cerebral artery occlusion). After 4 weeks of MICA feeding, half the rats underwent ischemic injury, while the other half remained intact. After one week recovery, all the rats were tested for motor and cognitive function (rotorod and water maze). At the time of euthanasia, measurements of long-term potentiation (LTP) were performed. While stroke injury led to motor and cognitive dysfunction, MICA supplementation did not reverse these impairments. However, MICA supplementation did improve stroke-related impairments in hippocampal LTP. The dichotomy of the outcomes suggest that more studies are needed to determine optimum duration and dosage for MICA to lead to substantial motor and cognitive improvements, along with LTP change and neuroprotection.


Subject(s)
Hippocampus/drug effects , Indoles/pharmacology , Ischemic Stroke/drug therapy , Ischemic Stroke/prevention & control , Ischemic Stroke/physiopathology , Long-Term Potentiation/drug effects , Maze Learning/drug effects , Neuroprotective Agents/pharmacology , Psychomotor Performance/drug effects , Recovery of Function/drug effects , Animals , Behavior, Animal/drug effects , Dietary Supplements , Dihydrolipoamide Dehydrogenase/drug effects , Disease Models, Animal , Indoles/administration & dosage , Infarction, Middle Cerebral Artery/complications , Ischemic Stroke/etiology , Male , Neuroprotective Agents/administration & dosage , Rats , Rats, Sprague-Dawley
9.
Neuroendocrinology ; 110(11-12): 914-928, 2020.
Article in English | MEDLINE | ID: mdl-31671430

ABSTRACT

INTRODUCTION: An increasing number of middle-aged men are being screened for low testosterone levels and the number of prescriptions for various forms of testosterone replacement therapy (TRT) has increased dramatically over the last 10 years. However, the safety of TRT has come into question with some studies suggesting increased morbidity and mortality. OBJECTIVE: Because the benefits of estrogen replacement in postmenopausal women and ovariectomized rodents are lost if there is an extended delay between estrogen loss and replacement, we hypothesized that TRT may also be sensitive to delayed replacement. METHODS: We compared the effects of testosterone replacement after short-term (2 weeks) and long-term testosterone deprivation (LTTD; 10 weeks) in middle-aged male rats on cerebral ischemia, oxidative stress, and cognitive function. We hypothesized that LTTD would increase oxidative stress levels and abrogate the beneficial effects of TRT. RESULTS: Hypogonadism itself and TRT after short-term castration did not affect stroke outcome compared to intact rats. However, after long-term hypogonadism in middle-aged male Fischer 344 rats, TRT exacerbated the detrimental behavioral effects of experimental focal cerebral ischemia, whereas this detrimental effect was prevented by administration of the free-radical scavenger tempol, suggesting that TRT exacerbates oxidative stress. In contrast, TRT improved cognitive performance in non-stroked rats regardless of the length of hypogonadism. In the Morris water maze, peripheral oxidative stress was highly associated with decreased cognitive ability. CONCLUSIONS: Taken together, these data suggest that TRT after long-term hypogonadism can exacerbate functional recovery after focal cerebral ischemia, but in the absence of injury can enhance cognition. Both of these effects are modulated by oxidative stress levels.


Subject(s)
Aging , Brain Ischemia , Cognitive Dysfunction , Hormone Replacement Therapy/adverse effects , Hypogonadism , Oxidative Stress , Testosterone/deficiency , Testosterone/pharmacology , Animals , Castration , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Disease Models, Animal , Hypogonadism/complications , Hypogonadism/drug therapy , Male , Maze Learning/drug effects , Rats , Rats, Inbred F344 , Testosterone/adverse effects , Time Factors
10.
J Nutr ; 149(3): 463-470, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30770531

ABSTRACT

BACKGROUND: N-acetyl cysteine (NAC) is a thiolic antioxidant that is thought to increase cellular glutathione (GSH) by augmenting the concentration of available cysteine, an essential precursor to GSH production. Manipulating redox status can affect brain function, and NAC intake has been associated with improving brain function in models of neurodegenerative diseases. OBJECTIVES: The objective of the study was to determine if short-term dietary supplementation with NAC could ameliorate functional impairment associated with aging. METHODS: C57BL/6J male mice aged 6, 12, or 24 mo were fed a control diet or the control diet supplemented with 0.3% NAC for a total of 12 wk. After 4 wk of dietary supplementation, mice began a series of behavioral tests to measure spontaneous activity (locomotor activity test), psychomotor performance (bridge-walking and coordinated running), and cognitive capacity (Morris water maze and discriminated active avoidance). The performance of the mice on these tests was analyzed through the use of analyses of variance with Age and Diet as factors. RESULTS: Supplementation of NAC improved peak motor performance in a coordinated running task by 14% (P < 0.05), and increased the time spent around the platform by 24% in a Morris water maze at age 6 mo. However, the supplementation had no to minimal effect on the motor and cognitive functions of 12- and 24-mo-old mice. CONCLUSIONS: The findings of this preclinical study support the claim that NAC has nootropic properties in 6-mo-old mice, but suggest that it may not be useful for improving motor and cognitive impairments in older mice.


Subject(s)
Acetylcysteine/administration & dosage , Aging , Cognition/drug effects , Dietary Supplements , Motor Activity/drug effects , Animal Feed , Animals , Diet/veterinary , Memory/drug effects , Mice , Spatial Learning/drug effects
11.
Aging Dis ; 9(4): 634-646, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30090652

ABSTRACT

Minor changes (~0.1 m/s) in human gait speed are predictive of various measures of decline and can be used to identify at-risk individuals prior to further decline. These associations are possible due to an abundance of human clinical research. However, age-related gait changes are not well defined in rodents, even though rodents are used as the primary pre-clinical model for many disease states as well as aging research. Our study investigated the usefulness of a novel automated system, the CatWalk™ XT, to measure age-related differences in gait. Furthermore, age-related functional declines have been associated with decreases in the reduced to oxidized glutathione ratio leading to a pro-oxidizing cellular shift. Therefore the secondary aim of this study was to determine whether chronic glutathione deficiency led to exacerbated age-associated impairments. Groups of male and female wild-type (gclm+/+) and knock-out (gclm-/-) mice aged 4, 10 and 17 months were tested on the CatWalk and gait measurements recorded. Similar age-related declines in all measures of gait were observed in both males and females, and chronic glutathione depletion was associated with some delays in age-related declines, which were further exacerbated. In conclusion, the CatWalk is a useful tool to assess gait changes with age, and further studies will be required to identify the potential compensating mechanisms underlying the effects observed with the chronic glutathione depletion.

12.
Aging Dis ; 8(1): 17-30, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28203479

ABSTRACT

Metformin is an oral anti-diabetic used as first-line therapy for type 2 diabetes. Because benefits of metformin extend beyond diabetes to other age-related pathology, and because its effect on gene expression profiles resembles that of caloric restriction, metformin has a potential as an anti-aging intervention and may soon be assessed as an intervention to extend healthspan. However, beneficial actions of metformin in the central nervous system have not been clearly established. The current study examined the effect of chronic oral metformin treatment on motor and cognitive function when initiated in young, middle-aged, or old male mice. C57BL/6 mice aged 4, 11, or 22 months were randomly assigned to either a metformin group (2 mg/ml in drinking water) or a control group. The mice were monitored weekly for body weight, as well as food and water intake and a battery of behavioral tests for motor, cognitive and visual function was initiated after the first month of treatment. Liver, hippocampus and cortex were collected at the end of the study to assess redox homeostasis. Overall, metformin supplementation in male mice failed to affect blood glucose, body weights and redox homeostasis at any age. It also had no beneficial effect on age-related declines in psychomotor, cognitive or sensory functions. However, metformin treatment had a deleterious effect on spatial memory and visual acuity, and reduced SOD activity in brain regions. These data confirm that metformin treatment may be associated with deleterious effect resulting from the action of metformin on the central nervous system.

13.
Behav Brain Res ; 305: 37-45, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26892275

ABSTRACT

Motor dysfunction has been found to be predictive of cognitive dysfunction in Alzheimer's disease and to occur earlier than cognitive impairments. While apolipoprotein (Apo) E4 has been associated with cognitive impairments, it remains unclear whether it also increases risk for motor dysfunction. Exercise and antioxidants are often recommended to reduce cognitive declines, however it is unclear whether they can successfully improve motor impairments. This study was designed to determine the extent of the impact of apolipoprotein genotype on motor function, and whether interventions such as exercise and antioxidant intake can improve motor function. This study is the first to identify the nature of the interaction between antioxidant intake and exercise using a mouse model expressing either the human ApoE3 or ApoE4 isoforms under glial fibrillary acid protein promoter (GFAP-ApoE3 and GFAP-ApoE4 mice). The mice were fed either a control diet or the control diet supplemented with vitamins E and C (1.12 IU/g diet α-tocopheryl acetate and 1.65mg/g ascorbic acid). Each genotype/diet group was further divided into a sedentary group or a group that followed a 6 days a week exercise regimen. After 8 weeks on their respective treatment, the mice were administered a battery of motor tests to measure reflexes, strength, coordination and balance. GFAP-ApoE4 mice exhibited impaired motor learning and diminished strength compared to the GFAP-ApoE3 mice. Exercise alone was more efficient at improving motor function and reversing ApoE4-associated impairments than antioxidants alone, even though improvements were rather subtle. Contrarily to expected outcomes, combination of antioxidants and exercise did not yield further improvements of motor function. Interestingly, antioxidants antagonized the beneficial effects of exercise on strength. These data suggest that environmental and genetic factors influence the outcome of interventions on motor function and should be investigated more thoroughly and taken into consideration when implementing changes in lifestyles.


Subject(s)
Apolipoprotein E4/genetics , Glial Fibrillary Acidic Protein/genetics , Movement Disorders/genetics , Movement Disorders/rehabilitation , Analysis of Variance , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Apolipoprotein E4/metabolism , Body Weight/drug effects , Body Weight/genetics , Disease Models, Animal , Eating/drug effects , Eating/genetics , Exercise Therapy , Glial Fibrillary Acidic Protein/metabolism , Humans , Locomotion/drug effects , Locomotion/genetics , Mice , Mice, Transgenic , Movement Disorders/drug therapy , Movement Disorders/therapy , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Psychomotor Performance/drug effects , Reaction Time/drug effects , Reaction Time/genetics , Reflex/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...