Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 57(49): 6054-6057, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34036992

ABSTRACT

We describe furan as a triggerable 'warhead' for site-specific cross-linking using the actin and thymosin ß4 (Tß4)-complex as model of a weak and dynamic protein-protein interaction (PPI) with known 3D structure and with application potential in disease contexts. The identified cross-linked residues demonstrate that lysine is a target for the furan warhead. The presented in vitro validation of covalently acting 'furan-armed' Tß4-variants provides initial proof to further exploit furan-technology for covalent drug design targeting lysines.


Subject(s)
Cross-Linking Reagents/chemistry , Furans/chemistry , Thymosin/chemistry , Actins/chemistry , Models, Molecular , Protein Binding
2.
Nat Plants ; 6(5): 533-543, 2020 05.
Article in English | MEDLINE | ID: mdl-32393883

ABSTRACT

During lateral root initiation, lateral root founder cells undergo asymmetric cell divisions that generate daughter cells with different sizes and fates, a prerequisite for correct primordium organogenesis. An excess of the GLV6/RGF8 peptide disrupts these initial asymmetric cell divisions, resulting in more symmetric divisions and the failure to achieve lateral root organogenesis. Here, we show that loss-of-function GLV6 and its homologue GLV10 increase asymmetric cell divisions during lateral root initiation, and we identified three members of the RGF1 INSENSITIVE/RGF1 receptor subfamily as likely GLV receptors in this process. Through a suppressor screen, we found that MITOGEN-ACTIVATED PROTEIN KINASE6 is a downstream regulator of the GLV pathway. Our data indicate that GLV6 and GLV10 act as inhibitors of asymmetric cell divisions and signal through RGF1 INSENSITIVE receptors and MITOGEN-ACTIVATED PROTEIN KINASE6 to restrict the number of initial asymmetric cell divisions that take place during lateral root initiation.


Subject(s)
Arabidopsis Proteins/physiology , Cell Division , Intracellular Signaling Peptides and Proteins/physiology , Mitogen-Activated Protein Kinases/physiology , Peptides/physiology , Plant Roots/growth & development , Blotting, Western , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/physiology , Signal Transduction
3.
Methods Mol Biol ; 1947: 81-102, 2019.
Article in English | MEDLINE | ID: mdl-30969412

ABSTRACT

Interactions between G protein-coupled receptors and their ligands hold extensive potential for drug discovery. Studying these interactions poses technical problems due to their transient nature and the inherent difficulties when working with G protein-coupled receptors (GPCR) that are only functional in a membrane setting. Here, we describe the use of a furan-based chemical cross-linking methodology to achieve selective covalent coupling between a furan-modified peptide ligand and its native GPCR present on the surface of living cells under normal cell culture conditions. This methodology relies on the oxidation of the furan moiety, which can be achieved by either addition of an external oxidation signal or by the reactive oxygen species produced by the cell. The cross-linked ligand-GPCR complex is subsequently detected by Western blotting based on the biotin label that is incorporated in the peptide ligand.


Subject(s)
Cell Membrane/metabolism , Cross-Linking Reagents/metabolism , Furans/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Humans , Ligands , Oxidation-Reduction , Protein Binding
4.
Biomedicines ; 6(4)2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30380792

ABSTRACT

Flexible in vitro translation (FIT) was used as a screening method to uncover a new methodology for peptide constraining based on the attack of a nucleophilic side-chain functionality onto an oxidized furylalanine side chain. A set of template peptides, each containing furylalanine as furan-modified amino acid and a nucleophilic residue (Cys, His, Lys, Arg, Ser, or Tyr), was produced through FIT. The translation mixtures were treated with N-bromosuccinimide (NBS) to achieve selective furan oxidation and subsequent MALDI analysis demonstrated Lys and Ser as promising residues for cyclisation. Solid-phase peptide synthesis (SPPS) was used to synthesize suitable amounts of material for further in-depth analysis and characterisation. It was found that in the case of the peptide containing lysine next to a furylalanine residue, a one-pot oxidation and reduction reaction leads to the generation of a cyclic peptide featuring a pyrrole moiety as cyclisation motif, resulting from the attack of the lysine side chain onto the oxidized furylalanine side chain. Structural evidence was provided via NMR and the generality of the methodology was explored. We hereby expand the scope of our previously developed furan-based peptide labeling and crosslinking strategy.

5.
Chem Commun (Camb) ; 54(84): 11929-11932, 2018 Oct 28.
Article in English | MEDLINE | ID: mdl-30285017

ABSTRACT

Methodologies to conjugate proteins to property-enhancing entities are highly sought after. We report a remarkably simple strategy for conjugating proteins bearing accessible cysteines to unprotected peptides containing a Cys(Scm) protecting group, which is introduced on-resin via a Cys(Acm) building block. The peptides employed for this proof of principle study are highly varied and structurally diverse, and undergo multiple on-resin decoration steps prior to conjugation. The methodology was applied to three different proteins, and proved to be efficient and site-selective. This twist on protecting group chemistry has led to a novel and generally applicable strategy for crossed-disulfide formation between proteins and peptides.


Subject(s)
Folic Acid/chemistry , Peptides/metabolism , Proteins/metabolism , Blotting, Western , Cysteine/chemistry , Electrophoresis, Polyacrylamide Gel , Molecular Structure , Oxidation-Reduction , Peptides/chemistry , Proteins/chemistry
6.
ACS Chem Biol ; 12(8): 2191-2200, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28714670

ABSTRACT

Chemical cross-linking is well-established for investigating protein-protein interactions. Traditionally, photo cross-linking is used but is associated with problems of selectivity and UV toxicity in a biological context. We here describe, with live cells and under normal growth conditions, selective cross-linking of a furan-modified peptide ligand to its membrane-presented receptor with zero toxicity, high efficiency, and spatio-specificity. Furan-modified kisspeptin-10 is covalently coupled to its glycosylated membrane receptor, GPR54(KISS1R). This newly expands the applicability of furan-mediated cross-linking not only to protein-protein cross-linking but also to cross-linking in situ. Moreover, in our earlier reports on nucleic acid interstrand cross-linking, furan activation required external triggers of oxidation (via addition of N-bromo succinimide or singlet oxygen). In contrast, we here show, for multiple cell lines, the spontaneous endogenous oxidation of the furan moiety with concurrent selective cross-link formation. We propose that reactive oxygen species produced by NADPH oxidase (NOX) enzymes form the cellular source establishing furan oxidation.


Subject(s)
Furans/chemistry , Kisspeptins/metabolism , Receptors, Kisspeptin-1/chemistry , Amino Acid Sequence , Cell Line, Tumor , Humans , Kisspeptins/chemistry , Models, Biological , Oxidation-Reduction , Reactive Oxygen Species , Receptors, Kisspeptin-1/agonists
SELECTION OF CITATIONS
SEARCH DETAIL
...