Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Vet J ; 203(1): 103-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25466573

ABSTRACT

Although lightning strike is an important cause of sudden death in livestock on pasture and among the main reasons why insurance companies consult an expert veterinarian, scientific information on this subject is limited. The aim of the present study was to provide objective information on the circumstantial evidence and pathological findings in lightning related fatalities (LRF), based on a retrospective analysis of 410 declarations, examined by a single expert veterinarian in Flanders, Belgium, from 1998 to 2012. Predictive logistic models for compatibility with LRF were constructed based on anamnestic, environmental and pathological factors. In addition, the added value of lightning location data (LLD) was evaluated. Pathognomonic singe lesions were present in 84/194 (43%) confirmed reports. Factors which remained significantly associated with LRF in the multivariable model were age, presence of a tree or open water in the near surroundings, tympany and presence of feed in the oral cavity at the time of investigation. This basic model had a sensitivity (Se) of 53.8% and a specificity (Sp) of 88.2%. Relying only on LLD to confirm LRF in livestock resulted in a high Se (91.3%), but a low Sp (41.2%), leading to a high probability that a negative case would be wrongly accepted as an LRF. The best results were obtained when combining the model based on the veterinary expert investigation (circumstantial evidence and pathological findings), together with the detection of cloud-to-ground (CG) lightning at the time and location of death (Se 89.1%; Sp 66.7%).


Subject(s)
Death, Sudden , Lightning Injuries/pathology , Lightning , Livestock , Veterinarians , Animals , Models, Theoretical , Retrospective Studies , Risk Factors
2.
Hum Reprod ; 28(1): 256-64, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23054067

ABSTRACT

STUDY QUESTION: What are the aneuploidy rates and incidence of mosaicism in good-quality human preimplantation embryos. SUMMARY ANSWER: High-level mosaicism and structural aberrations are not restricted to arrested or poorly developing embryos but are also common in good-quality IVF embryos. WHAT IS KNOWN ALREADY: Humans, compared with other mammals, have a poor fertility rate, and even IVF treatments have a relatively low success rate. It is known that human gametes and early preimplantation embryos carry chromosomal abnormalities that are thought to lower their developmental potential. STUDY DESIGN, SIZE AND DURATION: The embryos studied came from nine young (age <35 years old) IVF patients and were part of a cohort of embryos that all resulted in healthy births. These 14 embryos inseminated by ICSI and cryopreserved on Day 2 of development were thawed, cultured overnight and allowed to succumb by being left at room temperature for 24 h. Following removal of the zona pellucida, blastomeres were disaggregated and collected. PARTICIPANTS/MATERIALS, SETTING AND METHODS: There were 91 single blastomeres collected and amplified by multiple displacement amplification. Array-comparative genomic hybridization was performed on the amplified DNA. Array-data were normalized and aneuploidy was detected by the circular binary segmentation method. MAIN RESULTS AND THE ROLE OF CHANCE: The good-quality embryos exhibited high rates of aneuploidy, 10 of 14 (71.4%) of the embryos being mosaic. While none of the embryos had the same aneuploidy pattern in all cells, 4 of 14 (28.6%) were uniformly diploid. Of the 70 analysed blastomeres, 55.7% were diploid and 44.3% had chromosomal abnormalities, while 29% of the abnormal cells carried structural aberrations. WIDER IMPLICATIONS OF THE FINDINGS: Finding such a high rate of aneuploidy and mosaicism in excellent quality embryos from cycles with a high implantation rate warrants further research on the origin and significance of chromosomal abnormalities in human preimplantation embryos. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by the Instituut voor de aanmoediging van innovatie door Wetenschap en Technologie in Vlaanderen (IWT-Vlaanderen). A.M. is a PhD student at the IWT-Vlaanderen. C.S. is a postdoctoral fellow at the FWO Vlaanderen. There are no competing interests.


Subject(s)
Blastomeres/pathology , Chromosomal Instability , Chromosome Aberrations/embryology , Mosaicism/embryology , Adult , Aneuploidy , Cohort Studies , Comparative Genomic Hybridization , Cryopreservation , Diploidy , Ectogenesis , Female , Humans , Infertility, Female/pathology , Infertility, Female/therapy , Oligonucleotide Array Sequence Analysis , Preimplantation Diagnosis , Reproducibility of Results , Sperm Injections, Intracytoplasmic , Zygote
3.
Cytogenet Genome Res ; 133(2-4): 160-8, 2011.
Article in English | MEDLINE | ID: mdl-21311182

ABSTRACT

The first cell cycles following in vitro fertilization (IVF) of human gametes are prone to chromosome instability. Many, but often not all, blastomeres of an embryo acquire a genetic makeup during cleavage that is not representative of the original zygotic genome. Whole chromosomes are missegregated, but also structural rearrangements of chromosomes do occur in human cleavage stage embryogenesis following IVF. Analysis of pre- and postnatal DNA samples indicates that the in vivo human conceptions also endure instability of chromosome number and structure during cleavage of the fertilized oocyte. This embryonic chromosome instability not necessarily undermines normal human development, but may lead to a spectrum of conditions, including loss of conception, genetic disease and genetic variation development. In this review, the structural instability of chromosomes during human cleavage stage embryogenesis is catalogued, channeled into etiologic models and linked to genomic profiles of healthy and diseased newborns.


Subject(s)
Chromosomes, Human , Embryo, Mammalian , Animals , Chromosomal Instability , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Fertilization in Vitro , Gene Dosage , Gene Rearrangement , Humans
4.
Hum Reprod ; 26(4): 941-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21292638

ABSTRACT

Patients carrying a chromosomal rearrangement (CR) have an increased risk for chromosomally unbalanced conceptions. Preimplantation genetic diagnosis (PGD) may avoid the transfer of embryos carrying unbalanced rearrangements, therefore increasing the chance of pregnancy. Only 7-12 loci can be screened by fluorescence in situ hybridization whereas microarray technology can detect genome-wide imbalances at the single cell level. We performed PGD for a CR carrier with karyotype 46,XY,ins(3;2)(p23;q23q14.2),t(6;14)(p12.2;q13) using array comparative genomic hybridization. Selection of embryos for transfer was only based on copy number status of the chromosomes involved in both rearrangements. In two ICSI-PGD cycles, nine and seven embryos were analysed by array, leaving three and one embryo(s) suitable for transfer, respectively. The sensitivity and specificity of single cell arrays was 100 and 88.8%, respectively. In both cycles a single embryo was transferred, resulting in pregnancy following the second cycle. The embryo giving rise to the pregnancy was normal/balanced for the insertion and translocation but carried a trisomy 8 and nullisomy 9 in one of the two biopsied blastomeres. After 7 weeks of pregnancy the couple miscarried. Genetic analysis following hystero-embryoscopy showed a diploid (90%)/tetraploid (10%) mosaic chorion, while the gestational sac was empty. No chromosome 8 aneuploidy was detected in the chorion, while 8% of the cells carried a monosomy for chromosome 9. In summary, we demonstrate the feasibility and determine the accuracy of single cell array technology to test against transmission of the unbalanced meiotic products that can derive from CRs. Our findings also demonstrate that the genomic constitution of extra-embryonic tissue cannot necessarily be predicted from the copy number status of a single blastomere.


Subject(s)
Chromosome Aberrations , Comparative Genomic Hybridization/methods , Preimplantation Diagnosis/methods , Abortion, Spontaneous/genetics , Adult , Aneuploidy , Chromosomes, Human, Pair 8/genetics , Chromosomes, Human, Pair 9/genetics , Embryo Transfer , Female , Humans , In Situ Hybridization, Fluorescence , Male , Meiosis , Pregnancy , Pregnancy Outcome
5.
Hum Reprod ; 24(6): 1522-8, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19278970

ABSTRACT

BACKGROUND: Neurofibromatosis type 1 (NF1) and Von Hippel-Lindau (VHL) are dominantly inherited late onset cancer predisposition syndromes caused by mutations in the respective tumor suppressor genes (TSGs) NF1 and VHL. Less frequently TSGs are partially or fully deleted. Preimplantation genetic diagnosis (PGD) for cancer predisposition can be applied to select against the mutant allele in carrier couples. However, microdeletions within a single cell can, at present, not be detected by molecular diagnostic methods usually applied for PGD of monogenic disorders. METHODS: We performed PGD using interphase fluorescent in situ hybridization (FISH) on single blastomeres for three couples of which the women carried a microdeletion. One patient had the recurrent 1.4 Mb microdeletion covering NF1, a second suffered from an intragenic NF1 deletion and the last had a deletion of VHL. RESULTS: In total, seven PGD cycles were carried out for these couples, which resulted in the delivery of a healthy twin for the VHL microdeletion carrier. CONCLUSIONS: FISH-based PGD is a straightforward approach to detect (micro)deletions in single blastomeres. It seems likely that the number of conditions for which PGD-FISH is beneficial will increase rapidly with the advent of high-resolution arrays.


Subject(s)
In Situ Hybridization, Fluorescence , Neurofibromatosis 1/diagnosis , Neurofibromatosis 1/genetics , Preimplantation Diagnosis , von Hippel-Lindau Disease/diagnosis , von Hippel-Lindau Disease/genetics , Adult , Embryo Transfer , Female , Fertilization in Vitro , Gene Deletion , Humans , Ovulation Induction , Pregnancy , Pregnancy Outcome
6.
Int J Food Microbiol ; 83(3): 263-80, 2003 Jun 25.
Article in English | MEDLINE | ID: mdl-12745232

ABSTRACT

The quality of four types of fresh-cut produce, packaged in consumer-sized packages under an equilibrium modified atmosphere and stored at 7 degrees C, was assessed by establishing the relation between the microbial outgrowth and the corresponding production of nonvolatile compounds and related sensory disorders. In vitro experiments, performed on a lettuce-juice-agar, demonstrated the production of nonvolatile compounds by spoilage causing lactic acid bacteria and Enterobacteriaceae. Pseudomonas fluorescens and yeasts, however, were not able to produce detectable amounts of nonvolatile metabolites. The type of spoilage and quality deterioration in vivo depended on the type of vegetable. Mixed lettuce and chicory endives, leafy tissues, containing naturally low concentrations of sugars, showed a spoilage dominated by Gram-negative microorganisms, which are not producing nonvolatile compounds. Sensory problems were associated with visual properties and the metabolic activity of the plant tissue. Mixed bell peppers and grated celeriac, on the other hand, demonstrated a fast and intense growth of spoilage microorganisms, dominated by lactic acid bacteria and yeasts. This proliferation resulted in detectable levels of organic acids and the rejection by the trained sensory panel was based on the negative perception of the organoleptical properties (off-flavour, odour and taste). The applied microbiological criteria corresponded well with detectable changes in sensory properties and measurable concentrations of nonvolatile compounds, surely in the cases where lactic acid bacteria and yeasts were provoking spoilage. Consequently, the freshness of minimally processed vegetables, sensitive for outgrowth of lactic acid bacteria and yeasts (e.g., carrots, celeriac, bell peppers, mixtures with non-leafy vegetables) can be evaluated via analysis of the produced nonvolatile compounds.


Subject(s)
Bacteria/growth & development , Food Packaging/methods , Food Preservation/methods , Vegetables/microbiology , Yeasts/growth & development , Carbon Dioxide , Cold Temperature , Food Microbiology , Hydrogen-Ion Concentration , Odorants , Oxygen/metabolism , Taste
SELECTION OF CITATIONS
SEARCH DETAIL
...