Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38399939

ABSTRACT

Pyrolysis is already an established recycling method to recover the carbon fibers of end-of-life composites. However, the pyrolysis process removes the fiber sizing. Fiber sizing is a critical step in composite material production, influencing adhesion, protection and overall performance. In this study, recycled carbon nonwoven reinforcements made from pyrolyzed carbon fibers were pretreated to improve the mechanical properties of polyamide and polypropylene composites. The pretreatment involved applying specific coatings (sizings) on the nonwoven by spraying. Pretreated and non-pretreated composites were prepared by compression molding to investigate the impact of the fiber pretreatment on the tensile properties and interlaminar shear strength. The tests were performed in the 0° and 90° directions of the composite plate. The results revealed that pretreatment had little effect on the polyamide composites. However, significant improvements were obtained for the polypropylene composites, as an increase of more than 50% in tensile strength was achieved in the 0° direction and more than 35% in the 90° direction. In addition, the interlaminar shear strength increased from 11.9 MPa to 14.3 MPa in the 0° direction and from 14.9 MPa to 17.8 MPa in the 90° direction.

2.
Polymers (Basel) ; 14(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36559819

ABSTRACT

Polyurethane (PU) coatings are widely applied on high performing textiles due to their excellent durability and mechanical properties. PUs based on renewable resources were developed to improve the environmental impact of coatings by decreasing the carbon footprint. However, at the end-of-life, PU-coated textiles still end up as landfill or are incinerated since PUs are not biodegradable and are not being recycled at this moment. Therefore, the recycling of PU-coated substrates needs to be examined. This study reports the selective solvolysis of a polyester (PET) fabric coated with a bio-based PU using a 70% ZnCl2 aqueous solution. This method allowed the easy separation of the coating from the fabric. The thermal, chemical and mechanical characteristics of the virgin PET and recycled PET were examined via tensile strength tests, IR, TGA, DSC and GPC. Analysis of the fractions after solvolysis revealed that the PU was converted into the original polyol and an amine, corresponding to the isocyanate used for PU synthesis.

3.
Polymers (Basel) ; 14(19)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36235962

ABSTRACT

A biobased healable 2K polyurethane (PU) coating incorporating a Schiff base was synthesized and applied as a thin coating on textiles. The Schiff base, made out of cystine and vanillin, contained reversible imine and disulfide bonds and was used as a chain extender in PU synthesis. The FT-IR analysis indicated the successful incorporation of the Schiff base in the PU backbone. Compared with control PU coatings, the healable bio-based PU coating with the Schiff base showed very good healing properties using heat as external stimuli: a healing recovery of 75% was obtained after applying a 2 N scratch and complete recovery of the resistance to hydrostatic pressure. SEM analysis revealed complete closure of the scratch after healing for 30 min at 90 °C. The healing properties are attributed to the synergy of the dual-dynamic metatheses of the imine and disulfide bonds.

4.
Polymers (Basel) ; 13(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34883730

ABSTRACT

Polyurethane (PU) coatings are often applied on high added value technical textiles. Key factor to success of PU coatings is its versatility and durability. Up to today most PU textile coatings are solvent-based or water-based. Recent advances are made in applying bio-based PU on textiles. Currently, polymers made from renewable raw materials are experiencing a renaissance, owing to the trend to reduce CO2 emissions, the switch to CO2-neutral renewable products and the depletion of fossil resources. However, the application of bio-based coatings on textiles is limited. The present paper discusses the potential of a bio-based anionic PU dispersion as an environment friendly alternative for petroleum-based PU in textile coating. Coatings were applied on textile via knife over roll. The chemical, thermal and mechanical properties of the bio-based PU coating were characterised via FT-IR, thermogravimetric analysis, differential scanning calorimetry and tensile test. The performance of the coating was studied by evaluating antimicrobial properties, fire retardancy, the resistance to hydrostatic pressure initially and after washing, QUV ageing and hydrolysis test. The developed bio-based PUD coating complied to the fire retardancy test ISO 15025 and exhibited excellent hydrostatic pressure, QUV ageing resistance, hydrolysis resistance, wash fastness at 40 °C.

5.
Materials (Basel) ; 14(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34771901

ABSTRACT

Flame retardancy is often required in various textile applications. Halogenated flame retardants (FR) are commonly used since they have good FR performance. Several of these components are listed under REACH. Halogen-free FR compounds have been developed as alternatives. So far, not many biobased FR have made it to the market and are being applied in the textile sector, leaving great opportunities since biobased products are experiencing a renaissance. In this study, renewable FR based on sorbitol and isosorbide were synthesised. The reaction was performed in the melt. The resulting biobased FR were characterised via FT-IR, thermogravimetric analysis (TGA) and X-ray fluorescence (XRF). Cotton fabrics functionalized with the developed biobased FR passed ISO 15025 FR test. After washing, the FR properties of the fabrics decreased (longer afterflame and afterglow time) but still complied with ISO 15025, indicating the biobased FR were semi-permanent. The amount of residue of modified sorbitol and isosorbide measured at 600 °C in air was 31% and 27%, respectively. Cotton treated with biobased modified FR showed no ignition during cone calorimetry experiments, indicating a flame retardancy. Furthermore, a charring of the FR containing samples was observed by means of cone calorimetry and TGA measurements.

6.
ACS Omega ; 4(15): 16660-16666, 2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31616848

ABSTRACT

We report on a simple and versatile method for the preparation in one-step of omniphobic textiles, using only aqueous suspensions of silica particles and polyurethane devoid of long perfluoroalkyl chains (C8) that are now legally-banned because of severe environmental concerns. The omniphobic coatings can be applied on different substrates including fabrics, can resist acidic and basic conditions and a moderate number of washing cycles, and repel liquids such as n-octane, dodecane, hexadecane, ethylene glycol, glycerol, olive oil, and water. Analysis of the wetting properties of coated fabrics indicates that the liquid repellence results from the trapping of air in the re-entrant roughness created by aggregates of silica particles, together with the low surface tension of the polyurethane which bears legally accepted short perfluoroalkyl chains (C4). Our study is a significant step forward toward achieving more environmentally-friendly and robust omniphobic textiles.

7.
ACS Appl Mater Interfaces ; 10(18): 15346-15351, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29688696

ABSTRACT

We report on a facile, versatile, and environmentally friendly method to prepare superhydrophobic fabrics by a simple dip-coating method in water-based suspensions and emulsions. All the materials used are fluorine-free and commercially available at a large scale. The method can be easily integrated into standard textile industrial processes and has a strong potential for the mass production of environmentally friendly superwater-repellent fabrics. The produced fabrics show good resistance to machine washing and acidic or alkaline treatments. In addition, it is shown that superhydrophobicity can be quantitatively predicted based on the combination of the roughness of the fabric and of the fiber coating.

SELECTION OF CITATIONS
SEARCH DETAIL
...