Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Plant Cell Rep ; 43(6): 137, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713285

ABSTRACT

KEY MESSAGE: cAMP modulates the phosphorylation status of highly conserved phosphosites in RNA-binding proteins crucial for mRNA metabolism and reprogramming in response to heat stress. In plants, 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) is a second messenger that modulates multiple cellular targets, thereby participating in plant developmental and adaptive processes. Although its role in ameliorating heat-related damage has been demonstrated, mechanisms that govern cAMP-dependent responses to heat have remained elusive. Here we analyze the role cAMP-dependent phosphorylation during prolonged heat stress (HS) with a view to gain insight into processes that govern plant responses to HS. To do so, we performed quantitative phosphoproteomic analyses in Nicotiana tabacum Bright Yellow-2 cells grown at 27 °C or 35 °C for 3 days overexpressing a molecular "sponge" that reduces free intracellular cAMP levels. Our phosphorylation data and analyses reveal that the presence of cAMP is an essential factor that governs specific protein phosphorylation events that occur during prolonged HS in BY-2 cells. Notably, cAMP modulates HS-dependent phosphorylation of proteins that functions in mRNA processing, transcriptional control, vesicular trafficking, and cell cycle regulation and this is indicative for a systemic role of the messenger. In particular, changes of cAMP levels affect the phosphorylation status of highly conserved phosphosites in 19 RNA-binding proteins that are crucial during the reprogramming of the mRNA metabolism in response to HS. Furthermore, phosphorylation site motifs and molecular docking suggest that some proteins, including kinases and phosphatases, are conceivably able to directly interact with cAMP thus further supporting a regulatory role of cAMP in plant HS responses.


Subject(s)
Cyclic AMP , Heat-Shock Response , Nicotiana , Plant Proteins , Phosphorylation , Nicotiana/genetics , Nicotiana/metabolism , Heat-Shock Response/physiology , Cyclic AMP/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant
2.
PLoS Genet ; 19(7): e1010344, 2023 07.
Article in English | MEDLINE | ID: mdl-37418499

ABSTRACT

The chloroplast proteome is a dynamic mosaic of plastid- and nuclear-encoded proteins. Plastid protein homeostasis is maintained through the balance between de novo synthesis and proteolysis. Intracellular communication pathways, including the plastid-to-nucleus signalling and the protein homeostasis machinery, made of stromal chaperones and proteases, shape chloroplast proteome based on developmental and physiological needs. However, the maintenance of fully functional chloroplasts is costly and under specific stress conditions the degradation of damaged chloroplasts is essential to the maintenance of a healthy population of photosynthesising organelles while promoting nutrient redistribution to sink tissues. In this work, we have addressed this complex regulatory chloroplast-quality-control pathway by modulating the expression of two nuclear genes encoding plastid ribosomal proteins PRPS1 and PRPL4. By transcriptomics, proteomics and transmission electron microscopy analyses, we show that the increased expression of PRPS1 gene leads to chloroplast degradation and early flowering, as an escape strategy from stress. On the contrary, the overaccumulation of PRPL4 protein is kept under control by increasing the amount of plastid chaperones and components of the unfolded protein response (cpUPR) regulatory mechanism. This study advances our understanding of molecular mechanisms underlying chloroplast retrograde communication and provides new insights into cellular responses to impaired plastid protein homeostasis.


Subject(s)
Proteome , Proteostasis , Proteostasis/genetics , Proteome/genetics , Proteome/metabolism , Plastids/genetics , Plastids/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , Signal Transduction/physiology , Chloroplast Proteins/metabolism , Gene Expression Regulation, Plant
3.
Proteomics ; 23(15): e2300165, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37264754

ABSTRACT

3',5'-cyclic adenosine monophosphate (cAMP) is finally recognized as an essential signaling molecule in plants where cAMP-dependent processes include responses to hormones and environmental stimuli. To better understand the role of 3',5'-cAMP at the systems level, we have undertaken a phosphoproteomic analysis to elucidate the cAMP-dependent response of tobacco BY-2 cells. These cells overexpress a molecular "sponge" that buffers free intracellular cAMP level. The results show that, firstly, in vivo cAMP dampening profoundly affects the plant kinome and notably mitogen-activated protein kinases, receptor-like kinases, and calcium-dependent protein kinases, thereby modulating the cellular responses at the systems level. Secondly, buffering cAMP levels also affects mRNA processing through the modulation of the phosphorylation status of several RNA-binding proteins with roles in splicing, including many serine and arginine-rich proteins. Thirdly, cAMP-dependent phosphorylation targets appear to be conserved among plant species. Taken together, these findings are consistent with an ancient role of cAMP in mRNA processing and cellular programming and suggest that unperturbed cellular cAMP levels are essential for cellular homeostasis and signaling in plant cells.


Subject(s)
Cyclic AMP , Mitogen-Activated Protein Kinases , Cyclic AMP/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Signal Transduction , RNA, Messenger/metabolism
4.
Physiol Plant ; 175(3): e13934, 2023.
Article in English | MEDLINE | ID: mdl-37178362

ABSTRACT

How temperate trees respond to drier summers strongly depends on the drought susceptibility and the starch reserve of the very-fine roots (<0.5 mm in diameter). We performed morphological, physiological, chemical, and proteomic analyses on very-fine roots of Fagus sylvatica seedlings grown under moderate- and severe drought conditions. Moreover, to reveal the role of the starch reserves, a girdling approach was adopted to interrupt the flux of photosynthates toward the downstream sinks. Results show a seasonal sigmoidal growth pattern without evident mortality under moderate drought. After the severe-drought period, intact plants showed lower starch concentration and higher growth than those subjected to moderate drought, highlighting that very-fine roots rely on their starch reserves to resume growth. This behavior caused them to die with the onset of autumn, which was not observed under moderate drought. These findings indicated that extreme dry soil conditions are needed for significant root death in beech seedlings and that mortality mechanisms are defined within individual compartments. The girdling treatment showed that the physiological responses of very-fine roots to severe drought stress are critically related to the altered load or the reduced transport velocity of the phloem and that the changes in starch allocation critically alter the distribution of biomass. Proteomic evidence revealed that the phloem flux-dependent response was characterized by the decrease of carbon enzymes and the establishment of mechanisms to avoid the reduction of the osmotic potential. The response independent from the aboveground mainly involved the alteration of primary metabolic processes and cell wall-related enzymes.


Subject(s)
Fagus , Seedlings , Fagus/metabolism , Droughts , Plant Roots/metabolism , Proteomics , Trees/physiology , Starch/metabolism
5.
Plants (Basel) ; 12(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36840193

ABSTRACT

The application of seaweed extract-based biostimulants is a promising approach for achieving sustainable agriculture, with an enormous potential of improving crop yield and mitigating climate change effects. Abiotic stressors, such as drought, are major factors resulting in tomato (Solanum lycopersicum L.) yield losses and seaweed-based biostimulants have been proposed as an eco-friendly strategy to counteract this negative impact. Chondrus crispus is a common red seaweed widely used as source of carrageenans, not yet explored as a plant biostimulant. In this study, a protein hydrolysate-rich C. crispus extract, by-products of the carrageenan extraction, was tested on tomato plants under well-watered condition and water shortage. The foliar application of the protein-rich C. crispus extract conferred drought tolerance to tomato plants resulting in less noticeable visual stress symptoms. Treated plants showed higher shoot height and biomass under both well-watered and water deficit conditions, evidencing the double effect exerted by this new biostimulant, as plant growth promoter and drought stress protector. The treatment with the biostimulant had an effect on levels of abscisic acid and proline, and triggered the expression of Solyc02g084840, a drought marker gene. Finally, a label-free mass spectrometric approach allowed us to identify phycoerythrins and phycocyanins as major bioactive proteins contained in the extract. Altogether, these results indicate that the foliar application of protein hydrolysate-rich extracts from C. crispus improved tomato plant growth and tolerance to drought stress, suggesting a new opportunity for further applications in the agriculture and horticultural sectors.

6.
Fungal Biol ; 127(1-2): 881-890, 2023.
Article in English | MEDLINE | ID: mdl-36746560

ABSTRACT

Lentinula edodes (Shiitake) is one of the most heavily cultivated mushrooms in the world with proven antioxidant and antibacterial properties, among others. Evidence indicates that the choice of mushroom cultivation technique strongly influences the production of bioactive compounds, but to date the nature of many of these compounds has not been fully established. This work focuses on the proteomic characterization of L. edodes to highlight the main active processes two days after harvest and elucidates the proteins involved in the known antioxidant and antibacterial proprieties of Shiitake fruit bodies cultivated on oak logs. A label-free approach allowed us to identify a total of 2702 proteins which were mainly involved in carbohydrate and protein metabolism, cell growth and replication, indicating that several developmental processes remain active in fruit bodies post-harvest. Proteins with antioxidant activities were identified, indicating the contribution of proteins to the antioxidant properties of L. edodes extracts. Antibacterial assays also reveal the activity of a serine protease inhibitor that strongly accumulates in the post-harvest fruit body grown on oak logs. Overall, this study contributes to the understanding of the impact of the log cultivation method on the production of Shiitake mushrooms richest in high-value bioactive compounds.


Subject(s)
Shiitake Mushrooms , Shiitake Mushrooms/metabolism , Serine Proteinase Inhibitors/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Fruit , Proteomics
7.
Proteomics ; 23(6): e2200108, 2023 03.
Article in English | MEDLINE | ID: mdl-36571480

ABSTRACT

The beneficial symbiosis between plants and arbuscular mycorrhizal (AM) fungi leads to a deep reprogramming of plant metabolism, involving the regulation of several molecular mechanisms, many of which are poorly characterized. In this regard, proteomics is a powerful tool to explore changes related to plant-microbe interactions. This study provides a comprehensive proteomic meta-analysis conducted on AM-modulated proteins at local (roots) and systemic (shoots/leaves) level. The analysis was implemented by an in-depth study of root membrane-associated proteins and by a comparison with a transcriptome meta-analysis. A total of 4262 differentially abundant proteins were retrieved and, to identify the most relevant AM-regulated processes, a range of bioinformatic studies were conducted, including functional enrichment and protein-protein interaction network analysis. In addition to several protein transporters which are present in higher amounts in AM plants, and which are expected due to the well-known enhancement of AM-induced mineral uptake, our analysis revealed some novel traits. We detected a massive systemic reprogramming of translation with a central role played by the ribosomal translational apparatus. On one hand, these new protein-synthesis efforts well support the root cellular re-organization required by the fungal penetration, and on the other they have a systemic impact on primary metabolism.


Subject(s)
Mycorrhizae , Mycorrhizae/metabolism , Plant Roots/metabolism , Proteomics , Symbiosis , Plants
8.
Plant J ; 108(6): 1547-1564, 2021 12.
Article in English | MEDLINE | ID: mdl-34767660

ABSTRACT

As other arbuscular mycorrhizal fungi, Gigaspora margarita contains unculturable endobacteria in its cytoplasm. A cured fungal line has been obtained and showed it was capable of establishing a successful mycorrhizal colonization. However, previous OMICs and physiological analyses have demonstrated that the cured fungus is impaired in some functions during the pre-symbiotic phase, leading to a lower respiration activity, lower ATP, and antioxidant production. Here, by combining deep dual-mRNA sequencing and proteomics applied to Lotus japonicus roots colonized by the fungal line with bacteria (B+) and by the cured line (B-), we tested the hypothesis that L. japonicus (i) activates its symbiotic pathways irrespective of the presence or absence of the endobacterium, but (ii) perceives the two fungal lines as different physiological entities. Morphological observations confirmed the absence of clear endobacteria-dependent changes in the mycorrhizal phenotype of L. japonicus, while transcript and proteomic datasets revealed activation of the most important symbiotic pathways. They included the iconic nutrient transport and some less-investigated pathways, such as phenylpropanoid biosynthesis. However, significant differences between the mycorrhizal B+/B- plants emerged in the respiratory pathways and lipid biosynthesis. In both cases, the roots colonized by the cured line revealed a reduced capacity to activate genes involved in antioxidant metabolism, as well as the early biosynthetic steps of the symbiotic lipids, which are directed towards the fungus. Similar to its pre-symbiotic phase, the intraradical fungus revealed transcripts related to mitochondrial activity, which were downregulated in the cured line, as well as perturbation in lipid biosynthesis.


Subject(s)
Burkholderiaceae/physiology , Fungi/physiology , Lotus/microbiology , Mycorrhizae/physiology , Symbiosis/physiology , Antioxidants/metabolism , Fatty Acids/metabolism , Gene Expression Regulation, Plant , Lignin/metabolism , Lotus/physiology , Mitochondria/metabolism , Phosphorus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/microbiology , Plant Roots/physiology , Principal Component Analysis , Stress, Physiological
9.
Plant Cell Environ ; 44(6): 1946-1960, 2021 06.
Article in English | MEDLINE | ID: mdl-33675052

ABSTRACT

Plants rely on their microbiota for improving the nutritional status and environmental stress tolerance. Previous studies mainly focused on bipartite interactions (a plant challenged by a single microbe), while plant responses to multiple microbes have received limited attention. Here, we investigated local and systemic changes induced in wheat by two plant growth-promoting bacteria (PGPB), Azospirillum brasilense and Paraburkholderia graminis, either alone or together with an arbuscular mycorrhizal fungus (AMF). We conducted phenotypic, proteomic, and biochemical analyses to investigate bipartite (wheat-PGPB) and tripartite (wheat-PGPB-AMF) interactions, also upon a leaf pathogen infection. Results revealed that only AMF and A. brasilense promoted plant growth by activating photosynthesis and N assimilation which led to increased glucose and amino acid content. The bioprotective effect of the PGPB-AMF interactions on infected wheat plants depended on the PGPB-AMF combinations, which caused specific phenotypic and proteomic responses (elicitation of defense related proteins, immune response and jasmonic acid biosynthesis). In the whole, wheat responses strongly depended on the inoculum composition (single vs. multiple microbes) and the investigated organs (roots vs. leaf). Our findings showed that AMF is the best-performing microbe, suggesting its presence as the crucial one for synthetic microbial community development.


Subject(s)
Fungi/physiology , Mycorrhizae/physiology , Plant Proteins/metabolism , Triticum/growth & development , Triticum/microbiology , Agricultural Inoculants/physiology , Azospirillum brasilense , Burkholderiaceae , Host-Pathogen Interactions/physiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Roots/microbiology , Proteomics/methods , Triticum/metabolism , Xanthomonas/pathogenicity
10.
Plant Cell Environ ; 43(11): 2727-2742, 2020 11.
Article in English | MEDLINE | ID: mdl-32876347

ABSTRACT

Heat stress (HS), causing impairment in several physiological processes, is one of the most damaging environmental cues for plants. To counteract the harmful effects of high temperatures, plants activate complex signalling networks, indicated as HS response (HSR). Expression of heat shock proteins (HSPs) and adjustment of redox homeostasis are crucial events of HSR, required for thermotolerance. By pharmacological approaches, the involvement of cAMP in triggering plant HSR has been recently proposed. In this study, to investigate the role of cAMP in HSR signalling, tobacco BY-2 cells overexpressing the 'cAMP-sponge', a genetic tool that reduces intracellular cAMP levels, have been used. in vivo cAMP dampening increased HS susceptibility in a HSPs-independent way. The failure in cAMP elevation during HS caused a high accumulation of reactive oxygen species, due to increased levels of respiratory burst oxidase homolog D, decreased activities of catalase and ascorbate peroxidase, as well as down-accumulation of proteins involved in the control of redox homeostasis. In addition, cAMP deficiency impaired proteasome activity and prevented the accumulation of many proteins of ubiquitin-proteasome system (UPS). By a large-scale proteomic approach together with in silico analyses, these UPS proteins were identified in a specific cAMP-dependent network of HSR.


Subject(s)
Cyclic AMP/physiology , Proteasome Endopeptidase Complex/metabolism , Proteostasis/physiology , Cyclic AMP/metabolism , Heat-Shock Response , Oxidation-Reduction , Peptide Hydrolases/metabolism , Proteomics , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Nicotiana/metabolism , Nicotiana/physiology , Ubiquitin/metabolism
11.
Plant J ; 101(5): 1198-1220, 2020 03.
Article in English | MEDLINE | ID: mdl-31648387

ABSTRACT

Correct chloroplast development and function require co-ordinated expression of chloroplast and nuclear genes. This is achieved through chloroplast signals that modulate nuclear gene expression in accordance with the chloroplast's needs. Genetic evidence indicates that GUN1, a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal Small MutS-Related (SMR) domain, is involved in integrating multiple developmental and stress-related signals in both young seedlings and adult leaves. Recently, GUN1 was found to interact physically with factors involved in chloroplast protein homeostasis, and with enzymes of tetrapyrrole biosynthesis in adult leaves that function in various retrograde signalling pathways. Here we show that following perturbation of chloroplast protein homeostasis: (i) by growth in lincomycin-containing medium; or (ii) in mutants defective in either the FtsH protease complex (ftsh), plastid ribosome activity (prps21-1 and prpl11-1) or plastid protein import and folding (cphsc70-1), GUN1 influences NEP-dependent transcript accumulation during cotyledon greening and also intervenes in chloroplast protein import.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , DNA-Binding Proteins/metabolism , Proteostasis/genetics , Signal Transduction , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cell Nucleus/metabolism , Chloroplasts/metabolism , Cotyledon/genetics , Cotyledon/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant , Protein Transport , Seedlings/genetics , Seedlings/metabolism
12.
Front Microbiol ; 10: 2709, 2019.
Article in English | MEDLINE | ID: mdl-31866956

ABSTRACT

Among all the food-related nanoparticles consumed every day, silver nanoparticles (AgNPs) have become one of the most commonly utilized because of their antimicrobial properties. Despite their common use, the effects of sublethal concentrations of AgNPs, especially on gut biofilms, have been poorly investigated. To address this issue, we investigated in vitro the proteomic response of a monospecies Escherichia coli gut biofilm to chronic and acute exposures in sublethal concentrations of AgNPs. We used a new gel- and label-free proteomic approach based on shotgun nanoflow liquid chromatography-tandem mass spectrometry. This approach allows a quantification of the whole proteome at a dynamic range that is higher than the traditional proteomic investigation. To assess all different possible exposure scenarios, we compared the biofilm proteome of four treatments: (i) untreated cells for the control treatment, (ii) cells treated with 1 µg/ml AgNPs for 24 h for the acute treatment, (iii) cells grown with 1 µg/ml AgNPs for 96 h for the chronic treatment, and (iv) cells grown in the presence of 1 µg/ml AgNPs for 72 h and then further treated for 24 h with 10 µg/ml AgNPs for the chronic + acute treatment. Among the 1,917 proteins identified, 212 were significantly differentially expressed proteins. Several pathways were altered including biofilm formation, bacterial adhesion, stress response to reactive oxygen species, and glucose utilization.

13.
J Proteomics ; 192: 334-345, 2019 02 10.
Article in English | MEDLINE | ID: mdl-30268636

ABSTRACT

Proteasome activity is essential for pollen tube emergence and growth; nevertheless, little is known about proteasome function at the molecular level. The objective of this study was to identify molecular targets and pathways which are directly/indirectly controlled by the proteasome during pollen germination. To this aim, changes in the proteome and phosphoproteome of Actinidia pollen, germinated in the presence of the proteasome inhibitor MG132, were investigated. Phosphoproteins were enriched by metal oxide/hydroxide affinity chromatography and phosphopeptides were further isolated using titanium ion (Ti4+) functional magnetic microparticles prior to liquid chromatography-tandem mass spectrometry analysis. Our results show that proteasome inhibition affects the phosphoproteome more profoundly than the proteome. Accordingly, the steady-state abundance of some kinases and phosphatases was changed and/or their phosphorylation status altered. Notably, affected proteins are involved in processes that are fundamental to pollen germination such as cytoskeletal organization, vesicular transport, cell wall synthesis and remodeling, protein synthesis, folding and degradation as well as energetic metabolism. Our data provide a molecular framework for the structural alterations observed when the proteasome is inhibited, contribute to the understanding of how proteasome activity regulates pollen germination, show the cross-talk between phosphorylation and proteasomal degradation and are a resource for further functional analyses. SIGNIFICANCE: Pollen germination and tube growth are fundamental to successful fertilization in seed plants. These events are based on dramatic remodeling and the dismantling of existing programs, which are replaced by new ones. Degradation plays a prominent role in reshaping the protein repertoire, also cross talking with the bulk of post-translational modifications. At present, phosphorylation is the only modification studied in germinating pollen on a large scale. The proteasome has been universally recognized as one of the most important sites for protein degradation and its function has been shown to be essential for pollen tube emergence and elongation. Upon proteasome inhibition structural alterations and dysregulation of pivotal processes governing pollen germination have been described; however, a mechanistic framework for the proteasome function at the molecular level is still lacking. In this investigation we provide the very first view of the global impact of the proteasome in remodeling the proteome and phosphoproteome during germination and tube growth. Our results show how proteasome inhibition alters the levels, and profoundly affects the phosphorylation status of many proteins involved, controlling energetic and synthetic pathways and signaling cascades.


Subject(s)
Actinidia/metabolism , Phosphoproteins/metabolism , Plant Proteins/metabolism , Pollen/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteome/metabolism
14.
Sci Rep ; 8(1): 9625, 2018 06 25.
Article in English | MEDLINE | ID: mdl-29941972

ABSTRACT

Besides improved mineral nutrition, plants colonised by arbuscular mycorrhizal (AM) fungi often display increased biomass and higher tolerance to biotic and abiotic stresses. Notwithstanding the global importance of wheat as an agricultural crop, its response to AM symbiosis has been poorly investigated. We focused on the role of an AM fungus on mineral nutrition of wheat, and on its potential protective effect against Xanthomonas translucens. To address these issues, phenotypical, molecular and metabolomic approaches were combined. Morphological observations highlighted that AM wheat plants displayed an increased biomass and grain yield, as well as a reduction in lesion area following pathogen infection. To elucidate the molecular mechanisms underlying the mycorrhizal phenotype, we investigated changes of transcripts and proteins in roots and leaves during the double (wheat-AM fungus) and tripartite (wheat-AM fungus-pathogen) interaction. Transcriptomic and proteomic profiling identified the main pathways involved in enhancing plant biomass, mineral nutrition and in promoting the bio-protective effect against the leaf pathogen. Mineral and amino acid contents in roots, leaves and seeds, and protein oxidation profiles in leaves, supported the omics data, providing new insight into the mechanisms exerted by AM symbiosis to confer stronger productivity and enhanced resistance to X. translucens in wheat.


Subject(s)
Gene Expression Profiling , Metabolomics , Mycorrhizae/physiology , Proteomics , Symbiosis , Triticum/growth & development , Triticum/microbiology , Disease Resistance/genetics , Environment, Controlled , Phenotype , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Leaves/microbiology , Plant Roots/microbiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Triticum/genetics , Triticum/metabolism
15.
PLoS One ; 12(1): e0169481, 2017.
Article in English | MEDLINE | ID: mdl-28068390

ABSTRACT

In the present study, the protective role of inulin against lipopolysaccharide (LPS)-induced oxidative stress was evaluated on human colonic mucosa using a proteomic approach. Human colonic mucosa and submucosa were sealed between two chambers, with the luminal side facing upwards and overlaid with Krebs (control), LPS or LPS+ inulin IQ solution. The solutions on the submucosal side (undernatants) were collected following 30 min of mucosal exposure. iTRAQ based analysis was used to analyze the total soluble proteomes from human colonic mucosa and submucosa treated with different undernatants. Human colonic muscle strips were exposed to the undernatants to evaluate the response to acetylcholine. Inulin exposure was able to counteract, in human colonic mucosa, the LPS-dependent alteration of some proteins involved in the intestinal contraction (myosin light chain kinase (MLCK), myosin regulatory subunit (MYL)), to reduce the up-regulation of two proteins involved in the radical-mediated oxidative stress (the DNA-apurinic or apyrimidinic site) lyase) APEX1 and the T-complex protein 1 subunit eta (CCT7) and to entail a higher level of some detoxification enzymes (the metallothionein-2 MT2A, the glutathione-S-transferase K GSTk, and two UDP- glucuronosyltransferases UGT2B4, UGT2B17). Inulin exposure was also able to prevent the LPS-dependent intestinal muscle strips contraction impairment and the mucosa glutathione level alterations. Exposure of colonic mucosa to inulin seems to prevent LPS-induced alteration in expression of some key proteins, which promote intestinal motility and inflammation, reducing the radical-mediated oxidative stress.


Subject(s)
Colon/drug effects , Colon/metabolism , Proteome/drug effects , Proteomics , Colon/immunology , Glutathione , Humans , Lipopolysaccharides/immunology , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Oxidative Stress , Proteomics/methods
16.
New Phytol ; 211(1): 265-75, 2016 07.
Article in English | MEDLINE | ID: mdl-26914272

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) are obligate plant biotrophs that may contain endobacteria in their cytoplasm. Genome sequencing of Candidatus Glomeribacter gigasporarum revealed a reduced genome and dependence on the fungal host. RNA-seq analysis of the AMF Gigaspora margarita in the presence and absence of the endobacterium indicated that endobacteria have an important role in the fungal pre-symbiotic phase by enhancing fungal bioenergetic capacity. To improve the understanding of fungal-endobacterial interactions, iTRAQ (isobaric tags for relative and absolute quantification) quantitative proteomics was used to identify differentially expressed proteins in G. margarita germinating spores with endobacteria (B+), without endobacteria in the cured line (B-) and after application of the synthetic strigolactone GR24. Proteomic, transcriptomic and biochemical data identified several fungal and bacterial proteins involved in interspecies interactions. Endobacteria influenced fungal growth, calcium signalling and metabolism. The greatest effects were on fungal primary metabolism and respiration, which was 50% higher in B+ than in B-. A shift towards pentose phosphate metabolism was detected in B-. Quantification of carbonylated proteins indicated that the B- line had higher oxidative stress levels, which were also observed in two host plants. This study shows that endobacteria generate a complex interdomain network that affects AMF and fungal-plant interactions.


Subject(s)
Antioxidants/metabolism , Burkholderiaceae/physiology , Glomeromycota/physiology , Mycorrhizae/physiology , Bacterial Proteins/metabolism , Calcium Signaling , Fungal Proteins/metabolism , Lipid Metabolism , Lotus/microbiology , Reactive Oxygen Species/metabolism , Symbiosis/physiology , Trifolium/microbiology
17.
Plant Mol Biol ; 90(4-5): 467-83, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26786166

ABSTRACT

Cyclic adenosine 3',5'-monophosphate (cAMP) is a recognized second messenger; however, knowledge of cAMP involvement in plant physiological processes originates primarily from pharmacological studies. To obtain direct evidence for cAMP function in plants, tobacco Bright Yellow-2 (BY-2) cells were transformed with the cAMP sponge, which is a genetically encoded tool that reduces cAMP availability. BY-2 cells expressing the cAMP sponge (cAS cells), showed low levels of free cAMP and exhibited growth inhibition that was not proportional to the cAMP sponge transcript level. Growth inhibition in cAS cells was closely related to the precocious inhibition of mitosis due to a delay in cell cycle progression. The cAMP deficiency also enhanced antioxidant systems. Remarkable changes occurred in the cAS proteomic profile compared with that of wild-type (WT) cells. Proteins involved in translation, cytoskeletal organization, and cell proliferation were down-regulated, whereas stress-related proteins were up-regulated in cAS cells. These results support the hypothesis that BY-2 cells sense cAMP deficiency as a stress condition. Finally, many proteasome subunits were differentially expressed in cAS cells compared with WT cells, indicating that cAMP signaling broadly affects protein degradation via the ubiquitin/proteasome pathway.


Subject(s)
Cyclic AMP/metabolism , Gene Expression Regulation, Plant/physiology , Nicotiana/cytology , Stress, Physiological/physiology , Antioxidants/metabolism , Cell Line , Cyclic AMP/genetics , Plants, Genetically Modified , Proteomics , Superoxide Dismutase/metabolism , Time Factors , Transcriptome
18.
Environ Sci Pollut Res Int ; 23(3): 2288-300, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26408120

ABSTRACT

In this study, Hypnum cupressiforme moss bags were used to examine the atmospheric deposition of trace elements in the oil refinery region of Sardinia (Italy) compared with surrounding natural zones. The concentrations of 13 elements [arsenic (As), calcium (Ca), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), sodium (Na), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn)] were determined using inductively coupled plasma optical emission spectrometry. A significant accumulation of pollutants was detected using active biomonitoring with moss bags compared with a control site. The most relevant contaminants for all of the tested sites were Cr, Cu, Ni, and Zn. Moreover, the accumulation of Cr and Zn in the refinery industrial areas, IA1 and IA2, was more than five times greater than that detected at the control site. Levels of Cd, Mg, and Pb were also higher at all of the monitored sites compared with the control site. Both genomic and proteomic methods were used to study the response of H. cupressiforme to air pollution. No DNA damage or mutations were detected using the amplified fragment length polymorphisms (AFLP) method. At the protein level, 15 gel spots exhibited differential expression profiles between the moss samples collected at the IA1 site and the control site. Furthermore, among the 14 spots that showed a decrease in protein expression, nine were associated with ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and proteins of the light-harvesting complexes of photosystem (PS) II, three were associated with protein synthesis, and three were stress-related proteins. Thus, some of these proteins may represent good moss biosensors which could be used as pre-alert markers of environmental pollution.


Subject(s)
Bryopsida/chemistry , Bryopsida/genetics , Environmental Monitoring/methods , Air Pollutants/analysis , Air Pollutants/pharmacology , Amplified Fragment Length Polymorphism Analysis , Bryopsida/drug effects , Bryopsida/metabolism , Cadmium/analysis , Cadmium/pharmacology , Chromium/analysis , Chromium/pharmacology , Iron/analysis , Iron/pharmacology , Italy , Nickel/analysis , Nickel/pharmacology , Proteomics , Trace Elements/analysis , Trace Elements/pharmacology , Zinc/analysis , Zinc/pharmacology
20.
PLoS One ; 9(9): e108811, 2014.
Article in English | MEDLINE | ID: mdl-25265451

ABSTRACT

Chemical inhibition of the proteasome has been previously found to effectively impair pollen germination and tube growth in vitro. However, the mediators of these effects at the molecular level are unknown. By performing 2DE proteomic analysis, 24 differentially expressed protein spots, representing 14 unique candidate proteins, were identified in the pollen of kiwifruit (Actinidia deliciosa) germinated in the presence of the MG132 proteasome inhibitor. qPCR analysis revealed that 11 of these proteins are not up-regulated at the mRNA level, but are most likely stabilized by proteasome inhibition. These differentially expressed proteins are predicted to function in various pathways including energy and lipid metabolism, cell wall synthesis, protein synthesis/degradation and stress responses. In line with this evidence, the MG132-induced changes in the proteome were accompanied by an increase in ATP and ROS content and by an alteration in fatty acid composition.


Subject(s)
Actinidia/genetics , Gene Expression Profiling , Germination/drug effects , Leupeptins/pharmacology , Pollen/metabolism , Proteasome Inhibitors/pharmacology , Proteomics/methods , Adenosine Triphosphate/metabolism , Cell Wall/drug effects , Cell Wall/metabolism , Dimethyl Sulfoxide/pharmacology , Energy Metabolism/drug effects , Fatty Acids/metabolism , Lipid Metabolism/drug effects , Models, Biological , Plant Proteins/metabolism , Pollen/drug effects , Proteome/metabolism , Reactive Oxygen Species/metabolism , Solubility , Stress, Physiological/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...