Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731566

ABSTRACT

Size exclusion chromatography with total organic carbon detection (HPSEC-TOC) is a widely employed technique for characterizing aquatic natural organic matter (NOM) into high, medium, and low molecular weight fractions. This study validates the suitability of HPSEC-TOC for a simplified yet efficient routine analysis of freshwater and its application within drinking water treatment plants. The investigation highlights key procedural considerations for optimal results and shows the importance of sample preservation by refrigeration with a maximum storage duration of two weeks. Prior to analysis, the removal of inorganic carbon is essential, which is achieved without altering the NOM composition through sample acidification to pH 6 and subsequent N2-purging. The chromatographic separation employs a preparative TSK HW-50S column to achieve a limit of detection of 19.0 µgC dm-3 with an injection volume of 1350 mm-3. The method demonstrates linearity up to 10,000 µgC dm-3. Precision, trueness and recovery assessments are conducted using certified reference materials, model compounds, and real water samples. The relative measurement uncertainty in routine analysis ranges from 3.22% to 5.17%, while the measurement uncertainty on the bias is 8.73%. Overall, the HPSEC-TOC represents a reliable tool for NOM fractions analysis in both treated and untreated ground and surface water.

2.
iScience ; 24(2): 102095, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33659871

ABSTRACT

There is no efficient wastewater treatment solution for removing organic micropollutants (OMPs), which, therefore, are continuously introduced to the Earth's surface waters. This creates a severe risk to aquatic ecosystems and human health. In emerging water treatment processes based on ion-exchange membranes (IEM), transport of OMPs through membranes remains unknown. We performed a comprehensive investigation of the OMP transport through a single IEM under non-steady-state conditions. For the first time, positron annihilation lifetime spectroscopy was used to study differences in the free volume element radius between anion- and cation-exchange membranes, and between their thicknesses. The dynamic diffusion-adsorption model was used to calculate the adsorption and diffusion coefficients of OMPs. Remarkably, diffusion coefficients increased with the membrane thickness, where its surface resistance was more evident in thinner membranes. Presented results will contribute to the improved design of next-generation IEMs with higher selectivity toward multiple types of organic compounds.

3.
Water Res ; 144: 76-86, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30014981

ABSTRACT

Human urine is a valuable resource for nutrient recovery, given its high levels of nitrogen, phosphorus and potassium, but the compositional complexity of urine presents a challenge for an energy-efficient concentration and refinery of nutrients. In this study, a pilot installation combining precipitation, nitrification and electrodialysis (ED), designed for one person equivalent (1.2 Lurine d-1), was continuously operated for ∼7 months. First, NaOH addition yielded calcium and magnesium precipitation, preventing scaling in ED. Second, a moving bed biofilm reactor oxidized organics, preventing downstream biofouling, and yielded complete nitrification on diluted urine (20-40%, i.e. dilution factors 5 and 2.5) at an average loading rate of 215 mg N L-1 d-1. Batch tests demonstrated the halotolerance of the nitrifying community, with nitrification rates not affected up to an electrical conductivity of 40 mS cm-1 and gradually decreasing, yet ongoing, activity up to 96 mS cm-1 at 18% of the maximum rate. Next-generation 16S rRNA gene amplicon sequencing revealed that switching from a synthetic influent to real urine induced a profound shift in microbial community and that the AOB community was dominated by halophilic species closely related to Nitrosomonas aestuarii and Nitrosomonas marina. Third, nitrate, phosphate and potassium in the filtered (0.1 µm) bioreactor effluent were concentrated by factors 4.3, 2.6 and 4.6, respectively, with ED. Doubling the urine concentration from 20% to 40% further increased the ED recovery efficiency by ∼10%. Batch experiments at pH 6, 7 and 8 indicated a more efficient phosphate transport to the concentrate at pH 7. The newly proposed three-stage strategy opens up opportunities for energy- and chemical-efficient nutrient recovery from urine. Precipitation and nitrification enabled the long-term continuous operation of ED on fresh urine requiring minimal maintenance, which has, to the best of our knowledge, never been achieved before.


Subject(s)
Dialysis/methods , Nitrogen/isolation & purification , Urine/chemistry , Waste Disposal, Fluid/methods , Biofilms , Biofouling , Biological Oxygen Demand Analysis , Bioreactors/microbiology , Chemical Precipitation , Humans , Microbiota/genetics , Nitrates/chemistry , Nitrification , Oxidation-Reduction , Phosphates/isolation & purification , Phosphorus/chemistry , Phosphorus/isolation & purification , RNA, Ribosomal, 16S , Waste Disposal, Fluid/instrumentation
4.
Water Res ; 80: 59-70, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-25996753

ABSTRACT

Ion-exchange (IEX) and Donnan dialysis (DD) are techniques which can selectively remove cations, limiting scaling in reverse osmosis (RO). If the RO concentrate could be recycled for regeneration of these pre-treatment techniques, RO recovery could be largely increased without the need for chemical addition or additional technologies. In this study, two different RO feed streams (treated industrial waste water and simple tap water) were tested in the envisioned IEX-RO and DD-RO hybrids including RO concentrate recycling. The efficiency of multivalent cation removal depends mainly on the ratio of monovalent to multivalent cations in the feed stream, influencing the ion-exchange efficiency in both IEX and DD. Since the mono-to-multivalent ratio was very high in the waste water, the RO recovery could potentially be increased to 92%. For the tap water, these high RO recoveries could only be reached by adding additional NaCl, because of the low initial monovalent to multivalent ratio in the feed. In both cases, the IEX-RO hybrid proved to be most cost-efficient, due to the high current cost of the membranes used in DD. The membrane cost would have to decrease from ±300 €/m² to 10-30 €/m² - comparable to current reverse osmosis membranes - to achieve a comparable cost. In conclusion, the recycling of RO concentrate to regenerate ion exchange pre-treatment techniques for RO is an interesting option to increase RO recovery without addition of chemicals, but only at high monovalent/multivalent cation-ratios in the feed stream.


Subject(s)
Ion Exchange , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Algorithms , Cations/analysis , Cations/chemistry , Cations/isolation & purification , Drinking Water/analysis , Drinking Water/chemistry , Ion Exchange Resins/chemistry , Membranes, Artificial , Microscopy, Electron, Scanning , Models, Theoretical , Osmosis , Reproducibility of Results , Sodium Chloride/chemistry , Waste Disposal, Fluid/economics , Waste Disposal, Fluid/instrumentation , Wastewater/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Purification/economics , Water Purification/instrumentation
5.
Environ Sci Technol ; 49(1): 489-97, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25422872

ABSTRACT

Ion exchange membranes could provide a solution to the selective separation of organic and inorganic components in industrial wastewater. The phenomena governing the transport of organics through the IEM however, are not yet fully understood. Therefore, the transport of trace organic contaminants (TOrCs) as a model for a wide variety of organic compounds was studied under different conditions. It was found that in the absence of salt and external potential, the chemical equilibrium is the main driver for TOrC-transport, resulting in the transport of mainly charged TOrCs. When salt is present, the transport of TOrCs is hampered in favor of the NaCl transport, which shows a preferential interaction with the membranes due to its small size, high mobility and concentration. It is hypothesized that electrostatic interactions and electron donor/acceptor interactions are the main drivers for TOrC transport and that transport is mainly diffusion driven. This was confirmed in the experiments with different current densities, where the external potential seemed to have only a minor influence on the transport of TOrCs. It is only when the salt becomes nearly completely depleted that the TOrCs are transported as charge carriers. This shows that it is very difficult to get preferential transport of organic compounds due to the diffusive nature of their transport.


Subject(s)
Ion Exchange , Organic Chemicals/chemistry , Water Pollutants, Chemical/chemistry , Diffusion , Models, Theoretical , Wastewater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL