Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chem Res Toxicol ; 36(12): 1912-1920, 2023 12 18.
Article in English | MEDLINE | ID: mdl-37950699

ABSTRACT

Oxime reactivators of acetylcholinesterase (AChE) are used as causal antidotes for intended and unintended poisoning by organophosphate nerve agents and pesticides. Despite all efforts to develop new AChE reactivators, none of these drug candidates replaced conventional clinically used oximes. In addition to the therapeutic efficacy, determining the safety profile is crucial in preclinical drug evaluation. The exact mechanism of oxime toxicity and the structure-toxicity relationship are subjects of ongoing research, with oxidative stress proposed as a possible mechanism. In the present study, we investigated four promising bispyridinium oxime AChE reactivators, K048, K074, K075, and K203, and their ability to induce oxidative stress in vitro. Cultured human hepatoma cells were exposed to oximes at concentrations corresponding to their IC50 values determined by the MTT assay after 24 h. Their potency to generate reactive oxygen species, interfere with the thiol antioxidant system, and induce lipid peroxidation was evaluated at 1, 4, and 24 h of exposure. Reactivators without a double bond in the four-carbon linker, K048 and K074, showed a greater potential to induce oxidative stress compared with K075 and K203, which contain a double bond. Unlike oximes with a three-carbon-long linker, the number of aldoxime groups attached to the pyridinium moieties does not determine the oxidative stress induction for K048, K074, K075, and K203 oximes. In conclusion, our results emphasize that the structure of oximes plays a critical role in inducing oxidative stress, and this relationship does not correlate with their cytotoxicity expressed as the IC50 value. However, it is important to note that oxidative stress cannot be disregarded as a potential contributor to the side effects associated with oximes.


Subject(s)
Cholinesterase Reactivators , Humans , Cholinesterase Reactivators/pharmacology , Cholinesterase Reactivators/chemistry , Acetylcholinesterase/metabolism , Hep G2 Cells , Cholinesterase Inhibitors/toxicity , Oximes/pharmacology , Oximes/chemistry , Antidotes/pharmacology , Organophosphates/toxicity , Oxidative Stress , Carbon , Pyridinium Compounds/pharmacology , Pyridinium Compounds/chemistry
2.
J Pharm Biomed Anal ; 206: 114366, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34555634

ABSTRACT

At present, therapeutic drug monitoring is the standard in pharmacotherapy using medications with a narrow therapeutic index or showing serious adverse effects, such as in the case of ibrutinib. A technique commonly used for this purpose is liquid chromatography-tandem mass spectrometry combined with isotope dilution in sample processing. Although this method provides a high degree of reliability, its use can be complicated with some specific factors and does not guarantee trouble-free analysis. This paper is focused on investigating issues related to the differential adsorption of ibrutinib and its D4, D5 and 13C6 isotopically labeled analogues combined with instrument-specific carry-over. The results of the research point out the significantly different adsorption behavior of ibrutinib in fluidics of LC-MS compared with that of its D4, D5 and 13C6 stable isotope labeled analogues, showing preferential adsorption of non-labeled compound. The investigation also pointed to a strong affinity of ibrutinib to polymeric surfaces under specific conditions, which has to be taken into consideration during sample preparation and analysis. Our work opens a new field for the discussion of scarcely reported problem related to the use of stable isotope labeled internal standards in LC-MS/MS analysis.


Subject(s)
Tandem Mass Spectrometry , Adenine/analogs & derivatives , Adsorption , Chromatography, Liquid , Piperidines , Reproducibility of Results
3.
Clin Sci (Lond) ; 135(15): 1897-1914, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34318878

ABSTRACT

The anthracycline (ANT) anticancer drugs such as doxorubicin or daunorubicin (DAU) can cause serious myocardial injury and chronic cardiac dysfunction in cancer survivors. A bisdioxopiperazine agent dexrazoxane (DEX) has been developed as a cardioprotective drug to prevent these adverse events, but it is uncertain whether it is the best representative of the class. The present study used a rabbit model of chronic ANT cardiotoxicity to examine another bisdioxopiperazine compound called GK-667 (meso-(butane-2,3-diylbis(2,6-dioxopiperazine-4,1-diyl))bis(methylene)-bis(2-aminoacetate) hydrochloride), a water-soluble prodrug of ICRF-193 (meso-4,4'-(butan-2,3-diyl)bis(piperazine-2,6-dione)), as a potential cardioprotectant. The cardiotoxicity was induced by DAU (3 mg/kg, intravenously, weekly, 10 weeks), and GK-667 (1 or 5 mg/kg, intravenously) was administered before each DAU dose. The treatment with GK-667 was well tolerated and provided full protection against DAU-induced mortality and left ventricular (LV) dysfunction (determined by echocardiography and LV catheterization). Markers of cardiac damage/dysfunction revealed minor cardiac damage in the group co-treated with GK-667 in the lower dose, whereas almost full protection was achieved with the higher dose. This was associated with similar prevention of DAU-induced dysregulation of redox and calcium homeostasis proteins. GK-667 dose-dependently prevented tumor suppressor p53 (p53)-mediated DNA damage response in the LV myocardium not only in the chronic experiment but also after single DAU administration. These effects appear essential for cardioprotection, presumably because of the topoisomerase IIß (TOP2B) inhibition provided by its active metabolite ICRF-193. In addition, GK-667 administration did not alter the plasma pharmacokinetics of DAU and its main metabolite daunorubicinol (DAUol) in rabbits in vivo. Hence, GK-667 merits further investigation as a promising drug candidate for cardioprotection against chronic ANT cardiotoxicity.


Subject(s)
Cardiomyopathies/prevention & control , DNA Damage , Diketopiperazines/pharmacology , Myocytes, Cardiac/drug effects , Prodrugs/pharmacology , Topoisomerase II Inhibitors/pharmacology , Ventricular Dysfunction, Left/prevention & control , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , Animals , Cardiomyopathies/chemically induced , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Cardiotoxicity , Chronic Disease , Daunorubicin , Disease Models, Animal , Fibrosis , HL-60 Cells , Humans , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rabbits , Tumor Suppressor Protein p53/metabolism , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology
4.
Basic Clin Pharmacol Toxicol ; 129(3): 246-255, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34145973

ABSTRACT

3-Quinuclidinyl benzilate (BZ) ranks among incapacitating military warfare agents. It acts as a competitive inhibitor on muscarinic receptors leading to non-lethal mental impairment. The present study aimed to investigate toxicokinetics of BZ in rats. Moreover, BZ can be exploited to produce a pharmacological model of Alzheimer's disease; thus, this paper focuses mainly on the BZ distribution to the brain. Wistar rats were administered i.p. with BZ (2 and 10 mg/kg). The BZ concentration was determined using LC-MS/MS in plasma, urine, bile, brain, kidney and liver. The sample preparation was based on a solid phase extraction (liquids) or protein precipitation (organ homogenates). The plasma concentration peaked at 3 min (204.5 ± 55.4 and 2185.5 ± 465.4 ng/ml). The maximal concentration in the brain was reached several minutes later. Plasma elimination half-life was 67.9 ± 3.4 in the 2 mg/kg group and 96.6 ± 27.9 in the 10 mg/kg group. BZ concentrations remained steady in the brain, with slow elimination (t1/2 506.9 ± 359.5 min). Agent BZ is excreted mainly via the urine. Steady BZ concentration in the brain could explain the previously published duration of the significant impairment in passive avoidance tasks in rats after an injection of BZ.


Subject(s)
Muscarinic Antagonists/metabolism , Muscarinic Antagonists/toxicity , Quinuclidinyl Benzilate/metabolism , Quinuclidinyl Benzilate/toxicity , Animals , Bile/metabolism , Brain/metabolism , Male , Metabolome , Muscarinic Antagonists/blood , Muscarinic Antagonists/urine , Quinuclidinyl Benzilate/blood , Quinuclidinyl Benzilate/urine , Rats , Rats, Wistar , Toxicokinetics , Urine
5.
J Pharm Sci ; 110(4): 1842-1852, 2021 04.
Article in English | MEDLINE | ID: mdl-33545185

ABSTRACT

Oxime reactivators of acetylcholinesterase (AChE) represent an integral part of standard antidote treatment of organophosphate poisoning. Oxime K869 is a novel bisquaternary non-symmetric pyridinium aldoxime with two pyridinium rings connected by a tetramethylene bridge where two chlorines modify the pyridinium ring bearing the oxime moiety. Based on in vitro assays, K869 is a potent AChE and butyrylcholinesterase (BChE) reactivator. For the investigation of the basic pharmacokinetic properties of K869 after its intramuscular application, new HPLC-UV and LC-MS/MS methods were developed and validated for its determination in rat body fluids and tissues. In this study, the SPE procedure for sample pretreatment was optimized as an alternative to routine protein precipitation widely used in oxime pharmacokinetics studies. K869 oxime is quickly absorbed into the central compartment reaching its maximum in plasma (39 ± 4 µg/mL) between 15 and 20 min. The majority of K869 was eliminated by kidneys via urine when compared with biliary excretion. However, only a limited amount of K869 (65 ± 4 ng/g of brain tissue) was found in the brain 30 min after oxime administration. Regarding the brain/plasma ratio calculated (less than 1%), the penetration of K869 into the brain did not exceed conventionally used oximes.


Subject(s)
Body Fluids , Cholinesterase Reactivators , Acetylcholinesterase , Animals , Cholinesterase Inhibitors , Chromatography, Liquid , Oximes , Rats , Tandem Mass Spectrometry
6.
Sci Rep ; 11(1): 4456, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627707

ABSTRACT

The bisdioxopiperazine topoisomerase IIß inhibitor ICRF-193 has been previously identified as a more potent analog of dexrazoxane (ICRF-187), a drug used in clinical practice against anthracycline cardiotoxicity. However, the poor aqueous solubility of ICRF-193 has precluded its further in vivo development as a cardioprotective agent. To overcome this issue, water-soluble prodrugs of ICRF-193 were prepared, their abilities to release ICRF-193 were investigated using a novel UHPLC-MS/MS assay, and their cytoprotective effects against anthracycline cardiotoxicity were tested in vitro in neonatal ventricular cardiomyocytes (NVCMs). Based on the obtained results, the bis(2-aminoacetoxymethyl)-type prodrug GK-667 was selected for advanced investigations due to its straightforward synthesis, sufficient solubility, low cytotoxicity and favorable ICRF-193 release. Upon administration of GK-667 to NVCMs, the released ICRF-193 penetrated well into the cells, reached sufficient intracellular concentrations and provided effective cytoprotection against anthracycline toxicity. The pharmacokinetics of the prodrug, ICRF-193 and its rings-opened metabolite was estimated in vivo after administration of GK-667 to rabbits. The plasma concentrations of ICRF-193 reached were found to be adequate to achieve cardioprotective effects in vivo. Hence, GK-667 was demonstrated to be a pharmaceutically acceptable prodrug of ICRF-193 and a promising drug candidate for further evaluation as a potential cardioprotectant against chronic anthracycline toxicity.


Subject(s)
Anthracyclines/adverse effects , Cardiotonic Agents/pharmacology , Cardiotoxicity/drug therapy , DNA Topoisomerases, Type II/metabolism , Diketopiperazines/pharmacology , Piperazine/pharmacology , Topoisomerase II Inhibitors/pharmacology , Animals , Cardiotonic Agents/chemistry , Cardiotoxicity/metabolism , Dexrazoxane/chemistry , Dexrazoxane/pharmacology , Diketopiperazines/chemistry , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Piperazine/chemistry , Prodrugs/chemistry , Prodrugs/pharmacology , Rabbits , Razoxane/chemistry , Razoxane/pharmacology , Topoisomerase II Inhibitors/chemistry , Water/chemistry
7.
Talanta ; 223(Pt 2): 121748, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33298272

ABSTRACT

Electromembrane extraction (EME) of the polar zwitterionic drugs, anthracyclines (ANT, doxorubicin, daunorubicin and its metabolite daunorubicinol), from rabbit plasma was investigated. The optimized EME was compared to conventional sample pretreatment techniques such as protein precipitation (PP) and liquid-liquid extraction (LLE), mainly in terms of extraction reliability, recovery and matrix effect. In addition, phospholipids profile in the individual extracts was evaluated. The extracted samples were analyzed using UHPLC-MS/MS with electrospray ionization in positive ion mode. The method was validated within the concentration range of 0.25-1000 ng/mL for all tested ANT. Compared with PP and LLE, the EME provided high extraction recovery (more than 80% for all ANT) and excellent sample clean-up (matrix effect were 100 ± 10% with RSD values lower than 4% for all ANT). Furthermore, only negligible amounts of phospholipids were detected in the EME samples. Finally, practical applicability of EME was proved by analysis of plasma samples taken from a pilot in vivo study in rabbits. Consistent results were obtained when using both EME and LLE to extract the plasma prior to the analysis, which further confirmed high reliability of EME. This study clearly showed that EME is a simple, rapid, repeatable technique for extraction of ANT from plasma and it is an up to date alternative to routine conventional extraction techniques.


Subject(s)
Pharmaceutical Preparations , Tandem Mass Spectrometry , Animals , Anthracyclines , Membranes, Artificial , Rabbits , Reproducibility of Results
8.
Drug Test Anal ; 12(4): 431-438, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31785126

ABSTRACT

Agent BZ (3-quinuclidinyl benzilate) is a centrally acting synthetic anticholinergic agent, considered as a potential military incapacitating chemical warfare agent. Despite its significance as a model compound in pharmacological research and its potential misuse in chemical attacks, few modern analytical methods for BZ determination in biological samples have been published. The goal of the present work is to develop and validate a sensitive and rapid LC-MS/MS method for the determination of agent BZ in rat plasma. The sample preparation was based on solid-phase extraction on C-18 cartridges. The reversed-phase HPLC coupled with the mass spectrometer with electrospray ionization in the positive ion-selective reaction monitoring mode was employed in the BZ analysis. Atropine was used as an internal standard. The presented method is selective, accurate, precise, and linear (r2 = 0.9947) in a concentration range from 0.5 ng/mL to 1 000 ng/mL and sensitive enough (limit of detection 0.2 ng/mL; limit of quantification 0.5 ng/mL) to determine the BZ plasma levels in rats exposed to 2 mg/kg and 10 mg/kg of BZ. The highest level of BZ in plasma was observed 5 minutes after intramuscular administration (154.6 ± 22.3 ng/mL in rats exposed to 2 mg/kg of BZ and 1024 ± 269 ng/mL in rats exposed to 10 mg/kg). After 48 h, no BZ was observed at detectable levels. This new method allows the detection and quantification of BZ in biological samples after exposure of an observed organism and it will be further optimized for other tissues to observe the distribution of BZ in organs.


Subject(s)
Cholinergic Antagonists/blood , Quinuclidinyl Benzilate/blood , Animals , Cholinergic Antagonists/analysis , Chromatography, High Pressure Liquid , Limit of Detection , Male , Quinuclidinyl Benzilate/analysis , Rats , Rats, Wistar , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
9.
Front Pharmacol ; 10: 943, 2019.
Article in English | MEDLINE | ID: mdl-31555132

ABSTRACT

Memantine is a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist utilized as a palliative cure for Alzheimer's disease. This is the second study examining the memantine concentrations in cerebrospinal fluid. The previously published study enrolled six patients, and three of them were theoretically in a steady state. In our study, we enrolled 22 patients who regularly used a standard therapeutic dose of memantine (20 mg/day, oral administration) before the sample collection. Patients were divided into four groups, according to the time of plasma and cerebrospinal fluid collection: 6, 12, 18, and 24 h after memantine administration. The cerebrospinal fluid samples were also assessed for selected oxidative stress parameters (malondialdehyde, 3-nitrotyrosine, glutathione, non-protein thiols, and non-protein disulfides). The plasma/cerebrospinal fluid (CSF) ratio for all time intervals were within the range of 45.89% (6 h) to 55.60% (18 h), which corresponds with previously published findings in most patients. The other aim of our study was to deduce whether the achieved "real" memantine concentration in the central compartment was sufficient to block NMDA receptors. The IC50 value of memantine as an NMDA antagonist is in micromolar range; the lowest limit is 112 ng/ml (GluN2C), and this value was achieved only in three cases. The memantine cerebrospinal fluid concentration did not reach one quarter of the IC50 value in five cases (one patient was excluded for noncompliance); therefore, the potency of memantine as a therapeutic effect in patients may be questionable. However, it appears that memantine therapy positively affected the levels of some oxidative stress parameters, especially non-protein thiols and 3-nitrotyrosine.

10.
Drug Chem Toxicol ; 42(3): 252-256, 2019 May.
Article in English | MEDLINE | ID: mdl-29421945

ABSTRACT

The development of acetylcholinesterase reactivators, i.e., antidotes against organophosphorus poisoning, is an important goal of defense research. The aim of this study was to compare cytotoxicity and chemical structure of five currently available oximes (pralidoxime, trimedoxime, obidoxime, methoxime, and asoxime) together with four perspective oximes from K-series (K027, K074, K075, and K203). The cytotoxicity of tested substances was measured using two methods - colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay and impedance based real-time cytotoxicity assay - in three different cell lines (HepG2, ACHN, and NHLF). Toxicity was subsequently expressed as toxicological index IC50. The tested compounds showed different cytotoxicity ranging from 0.92 to 40.06 mM. In HepG2 cells, K027 was the least and asoxime was the most toxic reactivator. In ACHN and NHLF cell lines, trimedoxime was the compound with the lowest adverse effects, whereas the highest toxicity was found in methoxime-treated cells. The results show that at least five structural features affect the reactivators' toxicity such as the number of oxime groups in the molecule, their position on pyridinium ring, the length of carbon linker, and the oxygen substitution or insertion of the double bond into the connection chain. Newly synthetized oximes with IC50 ≥ 1 mM evaluated in this three cell lines model might appear suitable for further testing.


Subject(s)
Cholinesterase Reactivators/chemistry , Cholinesterase Reactivators/toxicity , Oximes/chemistry , Oximes/toxicity , Animal Testing Alternatives , Cell Survival/drug effects , Drug Evaluation, Preclinical , Fibroblasts/drug effects , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Lethal Dose 50 , Molecular Structure , Structure-Activity Relationship
11.
Ann Transl Med ; 7(23): 774, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32042790

ABSTRACT

BACKGROUND: Liver resection is a surgical procedure associated with a high risk of hepatic failure that can be fatal. One of the key mechanisms involves ischemia-reperfusion damage. Building on the well-known positive effects of hydrogen at mitigating this damage, the goal of this work was to demonstrate the antioxidant, anti-inflammatory, and anti-apoptotic effects of inhaled hydrogen in domestic pigs during major liver resection. METHODS: The study used a total of 12 domestic pigs, 6 animals underwent resection with inhaled hydrogen during general anesthesia, and 6 animals underwent the same procedure using conventional, unsupplemented, general anesthesia. Intraoperative preparation of the left branch of the hepatic portal vein and the left hepatic artery was performed, and a tourniquet was applied. Warm ischemia was induced for 120 minutes and then followed by liver reperfusion for another 120 minutes. Samples from the ischemic and non-ischemic halves of the liver were then removed for histological and biochemical examinations. RESULTS: An evaluation of histological changes was based on a numerical expression of damage based on the Suzuki score. Liver samples in the group with inhaled hydrogen showed a statistically significant reduction in histological changes compared to the control group. Biochemical test scores showed no statistically significant difference in hepatic transaminases, alkaline phosphatase (ALP), lactate dehydrogenase (LD), and lactate. However, a surprising result was a statistically significant difference in gamma-glutamyl-transferase (GMT). Marker levels of oxidative damage varied noticeably in plasma samples. CONCLUSIONS: In this experimental study, we showed that inhaled hydrogen during major liver resection unquestionably reduced the level of oxidative stress associated with ischemia-reperfusion damage. We confirmed this phenomenon both histologically and by direct measurement of oxidative stress in the organism.

12.
Biomed Chromatogr ; 32(12): e4349, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30051494

ABSTRACT

Although reactive oxygen/nitrogen species (ROS/RNS) have a fundamental role in physiological processes, enhanced ROS/RNS production induced by exogenous sources, including drugs and other xenobiotics, may result in serious damage to biomolecules. Oxidative/nitrosative stress is being intensively investigated and might be responsible for a variety of health side effects. The present liquid chromatography-tandem mass spectrometry (LC-MS/MS) method provides reliable and accurate simultaneous measurement of malondialdehyde (MDA) and 3-nitrotyrosine (3-NT) in cultured human hepatoma (HepG2) cells. Sample preparation process involving ultrasonic homogenization, alkaline hydrolysis of protein-bound MDA and 3-NT, deproteination, derivatization of MDA by 2,4-dinitrophenylhydrazine and solid-phase extraction was optimized, ensuring the isolation and purification of desired analytes. Additionally, nonprotein thiols and nonprotein disulfides were measured using HPLC-UV. The established lower limit of quantification (0.025 nmol/mL for MDA; 0.0125 nmol/mL for 3-NT) allowed their LC-MS/MS determination in HepG2 cells exposed to model oxidizing agent, tert-butyl hydroperoxide (t-BOOH). The results show significant changes in MDA and 3-NT concentrations and alterations in thiol redox-state in dependence on the t-BOOH concentration and duration of its incubation in HepG2 cells. Concurrent evaluation of oxidative/nitrosative stress biomarkers in the in vitro model may significantly facilitate assessment of toxicity of newly developed drugs in preclinical trials and thus improve their safety profile.


Subject(s)
Chromatography, Liquid/methods , Malondialdehyde/analysis , Tandem Mass Spectrometry/methods , Tyrosine/analogs & derivatives , Hep G2 Cells , Humans , Limit of Detection , Liver Neoplasms/metabolism , Oxidative Stress , Reproducibility of Results , Tyrosine/analysis
13.
J Appl Toxicol ; 38(8): 1058-1070, 2018 08.
Article in English | MEDLINE | ID: mdl-29516527

ABSTRACT

Despite the main mechanism of organophosphate (OP) toxicity through inhibition of acetylcholinesterase (AChE) being well known over the years, some chronic adverse health effects indicate the involvement of additional pathways. Oxidative stress is among the most intensively studied. Overstimulation of cholinergic and glutamatergic nervous system is followed by intensified generation of reactive species and oxidative damage in many tissues. In this review, the role of oxidative stress in pathophysiology of OP poisoning and the influence of commonly used medical interventions on its levels are discussed. Current standardized therapy of OP intoxications comprises live-saving administration of the anticholinergic drug atropine accompanied by oxime AChE reactivator and diazepam. The capability of these antidotes to ameliorate OP-induced oxidative stress varies between both therapeutic groups and individual medications within the drug class. Regarding oxidative stress, atropine does not seem to have a significant effect on oxidative stress parameters in OP poisoning. In a case of AChE reactivators, pro-oxidative and antioxidative properties could be found. It is assumed that the ability of oximes to trigger oxidative stress is rather associated with their chemical structure than reactivation efficacy. The data indicating the potency of diazepam in preventing OP-induced oxidative stress are not available. Based on current knowledge on the mechanism of OP-mediated oxidative stress, alternative approaches (including antioxidants or multifunctional drugs) in therapy of OP poisoning are under consideration.


Subject(s)
Antidotes/therapeutic use , Organophosphate Poisoning/drug therapy , Oxidative Stress/drug effects , Animals , Antioxidants/therapeutic use , Atropine/therapeutic use , Cholinesterase Reactivators/therapeutic use , Diazepam/therapeutic use , Humans , Oximes/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...