Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol ; 25(1): 123, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760655

ABSTRACT

BACKGROUND: Vision depends on the interplay between photoreceptor cells of the neural retina and the underlying retinal pigment epithelium (RPE). Most genes involved in inherited retinal diseases display specific spatiotemporal expression within these interconnected retinal components through the local recruitment of cis-regulatory elements (CREs) in 3D nuclear space. RESULTS: To understand the role of differential chromatin architecture in establishing tissue-specific expression at inherited retinal disease loci, we mapped genome-wide chromatin interactions using in situ Hi-C and H3K4me3 HiChIP on neural retina and RPE/choroid from human adult donor eyes. We observed chromatin looping between active promoters and 32,425 and 8060 candidate CREs in the neural retina and RPE/choroid, respectively. A comparative 3D genome analysis between these two retinal tissues revealed that 56% of 290 known inherited retinal disease genes were marked by differential chromatin interactions. One of these was ABCA4, which is implicated in the most common autosomal recessive inherited retinal disease. We zoomed in on retina- and RPE-specific cis-regulatory interactions at the ABCA4 locus using high-resolution UMI-4C. Integration with bulk and single-cell epigenomic datasets and in vivo enhancer assays in zebrafish revealed tissue-specific CREs interacting with ABCA4. CONCLUSIONS: Through comparative 3D genome mapping, based on genome-wide, promoter-centric, and locus-specific assays of human neural retina and RPE, we have shown that gene regulation at key inherited retinal disease loci is likely mediated by tissue-specific chromatin interactions. These findings do not only provide insight into tissue-specific regulatory landscapes at retinal disease loci, but also delineate the search space for non-coding genomic variation underlying unsolved inherited retinal diseases.


Subject(s)
Chromatin , Retina , Retinal Diseases , Retinal Pigment Epithelium , Humans , Retinal Pigment Epithelium/metabolism , Chromatin/metabolism , Retinal Diseases/genetics , Retinal Diseases/metabolism , Retina/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Promoter Regions, Genetic , Genetic Loci , Zebrafish/genetics , Regulatory Sequences, Nucleic Acid , Genome, Human
2.
Cell Rep Med ; 5(5): 101516, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38626769

ABSTRACT

Non-small cell lung cancer (NSCLC) is known for high relapse rates despite resection in early stages. Here, we present the results of a phase I clinical trial in which a dendritic cell (DC) vaccine targeting patient-individual neoantigens is evaluated in patients with resected NSCLC. Vaccine manufacturing is feasible in six of 10 enrolled patients. Toxicity is limited to grade 1-2 adverse events. Systemic T cell responses are observed in five out of six vaccinated patients, with T cell responses remaining detectable up to 19 months post vaccination. Single-cell analysis indicates that the responsive T cell population is polyclonal and exhibits the near-entire spectrum of T cell differentiation states, including a naive-like state, but excluding exhausted cell states. Three of six vaccinated patients experience disease recurrence during the follow-up period of 2 years. Collectively, these data support the feasibility, safety, and immunogenicity of this treatment in resected NSCLC.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Carcinoma, Non-Small-Cell Lung , Cell Differentiation , Dendritic Cells , Lung Neoplasms , T-Lymphocytes , Vaccination , Humans , Dendritic Cells/immunology , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Cancer Vaccines/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Male , Female , Middle Aged , Antigens, Neoplasm/immunology , Cell Differentiation/immunology , Aged , T-Lymphocytes/immunology
3.
Am J Hum Genet ; 111(3): 509-528, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38412861

ABSTRACT

Neurodevelopmental disorders (NDDs) result from impaired development and functioning of the brain. Here, we identify loss-of-function (LoF) variation in ZFHX3 as a cause for syndromic intellectual disability (ID). ZFHX3 is a zinc-finger homeodomain transcription factor involved in various biological processes, including cell differentiation and tumorigenesis. We describe 42 individuals with protein-truncating variants (PTVs) or (partial) deletions of ZFHX3, exhibiting variable intellectual disability and autism spectrum disorder, recurrent facial features, relative short stature, brachydactyly, and, rarely, cleft palate. ZFHX3 LoF associates with a specific methylation profile in whole blood extracted DNA. Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation. ZFHX3 was found to interact with the chromatin remodeling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex, suggesting a function in chromatin remodeling and mRNA processing. Furthermore, ChIP-seq for ZFHX3 revealed that it predominantly binds promoters of genes involved in nervous system development. We conclude that loss-of-function variants in ZFHX3 are a cause of syndromic ID associating with a specific DNA methylation profile.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Humans , Intellectual Disability/genetics , Intellectual Disability/complications , Haploinsufficiency/genetics , Neurodevelopmental Disorders/genetics , Brain/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
4.
medRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37292950

ABSTRACT

Neurodevelopmental disorders (NDDs) result from impaired development and functioning of the brain. Here, we identify loss-of-function variation in ZFHX3 as a novel cause for syndromic intellectual disability (ID). ZFHX3, previously known as ATBF1, is a zinc-finger homeodomain transcription factor involved in multiple biological processes including cell differentiation and tumorigenesis. Through international collaboration, we collected clinical and morphometric data (Face2Gene) of 41 individuals with protein truncating variants (PTVs) or (partial) deletions of ZFHX3 . We used data mining, RNA and protein analysis to identify the subcellular localization and spatiotemporal expression of ZFHX3 in multiple in vitro models. We identified the DNA targets of ZFHX3 using ChIP seq. Immunoprecipitation followed by mass spectrometry indicated potential binding partners of endogenous ZFHX3 in neural stem cells that were subsequently confirmed by reversed co-immunoprecipitation and western blot. We evaluated a DNA methylation profile associated with ZFHX3 haploinsufficiency using DNA methylation analysis on whole blood extracted DNA of six individuals with ZFHX3 PTVs and four with a (partial) deletion of ZFHX3 . A reversed genetic approach characterized the ZFHX3 orthologue in Drosophila melanogaster . Loss-of-function variation of ZFHX3 consistently associates with (mild) ID and/or behavioural problems, postnatal growth retardation, feeding difficulties, and recognizable facial characteristics, including the rare occurrence of cleft palate. Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation in neural stem cells and SH-SY5Y cells, ZFHX3 interacts with the chromatin remodelling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex. In line with a role for chromatin remodelling, ZFHX3 haploinsufficiency associates with a specific DNA methylation profile in leukocyte-derived DNA. The target genes of ZFHX3 are implicated in neuron and axon development. In Drosophila melanogaster , z fh2, considered to be the ZFHX3 orthologue, is expressed in the third instar larval brain. Ubiquitous and neuron-specific knockdown of zfh2 results in adult lethality underscoring a key role for zfh2 in development and neurodevelopment. Interestingly, ectopic expression of zfh2 as well as ZFHX3 in the developing wing disc results in a thoracic cleft phenotype. Collectively, our data shows that loss-of-function variants in ZFHX3 are a cause of syndromic ID, that associates with a specific DNA methylation profile. Furthermore, we show that ZFHX3 participates in chromatin remodelling and mRNA processing.

6.
Hum Mol Genet ; 28(5): 818-827, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30445463

ABSTRACT

Mutations in myocyte enhancer factor 2C (MEF2C), an important transcription factor in neurodevelopment, are associated with a Rett-like syndrome. Structural variants (SVs) upstream of MEF2C, which do not disrupt the gene itself, have also been found in patients with a similar phenotype, suggesting that disruption of MEF2C regulatory elements can also cause a Rett-like phenotype. To characterize those elements that regulate MEF2C during neural development and that are affected by these SVs, we used genomic tools coupled with both in vitro and in vivo functional assays. Through circularized chromosome conformation capture sequencing (4C-seq) and the assay for transposase-accessible chromatin using sequencing (ATAC-seq), we revealed a complex interaction network in which the MEF2C promoter physically contacts several distal enhancers that are deleted or translocated by disease-associated SVs. A total of 16 selected candidate regulatory sequences were tested for enhancer activity in vitro, with 14 found to be functional enhancers. Further analyses of their in vivo activity in zebrafish showed that each of these enhancers has a distinct activity pattern during development, with eight enhancers displaying neuronal activity. In summary, our results disentangle a complex regulatory network governing neuronal MEF2C expression that involves multiple distal enhancers. In addition, the characterized neuronal enhancers pose as novel candidates to screen for mutations in neurodevelopmental disorders, such as Rett-like syndrome.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation , MEF2 Transcription Factors/genetics , Neurons/metabolism , Rett Syndrome/genetics , Cells, Cultured , Genetic Association Studies/methods , Genetic Predisposition to Disease , Humans , Regulatory Sequences, Nucleic Acid , Rett Syndrome/diagnosis
7.
Sci Rep ; 7(1): 16650, 2017 11 30.
Article in English | MEDLINE | ID: mdl-29192200

ABSTRACT

The combination of genome-edited human embryonic stem cells (hESCs) and subsequent neural differentiation is a powerful tool to study neurodevelopmental disorders. Since the naïve state of pluripotency has favourable characteristics for efficient genome-editing, we optimized a workflow for the CRISPR/Cas9 system in these naïve stem cells. Editing efficiencies of respectively 1.3-8.4% and 3.8-19% were generated with the Cas9 nuclease and the D10A Cas9 nickase mutant. Next to this, wildtype and genome-edited naïve hESCs were successfully differentiated to neural progenitor cells. As a proof-of-principle of our workflow, two monoclonal genome-edited naïve hESCs colonies were obtained for TUNA, a long non-coding RNA involved in pluripotency and neural differentiation. In these genome-edited hESCs, an effect was seen on expression of TUNA, although not on neural differentiation potential. In conclusion, we optimized a genome-editing workflow in naïve hESCs that can be used to study candidate genes involved in neural differentiation and/or functioning.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Human Embryonic Stem Cells/metabolism , Cell Differentiation/genetics , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , High-Throughput Nucleotide Sequencing , Humans , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Workflow
8.
Hum Mutat ; 36(2): 222-31, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25385316

ABSTRACT

A homozygous missense mutation (c.822G>C) was found in the gene encoding the mitochondrial asparaginyl-tRNA synthetase (NARS2) in two siblings born to consanguineous parents. These siblings presented with different phenotypes: one had mild intellectual disability and epilepsy in childhood, whereas the other had severe myopathy. Biochemical analysis of the oxidative phosphorylation (OXPHOS) complexes in both siblings revealed a combined complex I and IV deficiency in skeletal muscle. In-gel activity staining after blue native-polyacrylamide gel electrophoresis confirmed the decreased activity of complex I and IV, and, in addition, showed the presence of complex V subcomplexes. Considering the consanguineous descent, homozygosity mapping and whole-exome sequencing were combined revealing the presence of one single missense mutation in the shared homozygous region. The c.822G>C variant affects the 3' splice site of exon 7, leading to skipping of the whole exon 7 and a part of exon 8 in the NARS2 mRNA. In EBV-transformed lymphoblasts, a specific decrease in the amount of charged mt-tRNA(Asn) was demonstrated as compared with controls. This confirmed the pathogenic nature of the variant. To conclude, the reported variant in NARS2 results in a combined OXPHOS complex deficiency involving complex I and IV, making NARS2 a new member of disease-associated aaRS2.


Subject(s)
Aspartate-tRNA Ligase/genetics , Mutation, Missense , Adult , Aspartate-tRNA Ligase/metabolism , Base Sequence , Cells, Cultured , Consanguinity , DNA Mutational Analysis , Female , Genetic Association Studies , Homozygote , Humans , Male , Muscular Diseases/genetics , Protein Biosynthesis , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Splice Sites
SELECTION OF CITATIONS
SEARCH DETAIL
...