Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Nat Commun ; 15(1): 3821, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714702

ABSTRACT

Differentiation of stem and progenitor cells is a highly regulated process that involves the coordinated action of multiple layers of regulation. Here we show how the post-transcriptional regulatory layer instructs the level of chromatin regulation via miR-144 and its targets to orchestrate chromatin condensation during erythropoiesis. The loss of miR-144 leads to impaired chromatin condensation during erythrocyte maturation. Among the several targets of miR-144 that influence chromatin organization, the miR-144-dependent regulation of Hmgn2 is conserved from fish to humans. Our genetic probing of the miR-144/Hmgn2 regulatory axis establish that intact miR-144 target sites in the Hmgn2 3'UTR are necessary for the proper maturation of erythrocytes in both zebrafish and human iPSC-derived erythroid cells while loss of Hmgn2 rescues in part the miR-144 null phenotype. Altogether, our results uncover miR-144 and its target Hmgn2 as the backbone of the genetic regulatory circuit that controls the terminal differentiation of erythrocytes in vertebrates.


Subject(s)
Chromatin , Erythropoiesis , MicroRNAs , Zebrafish , MicroRNAs/metabolism , MicroRNAs/genetics , Erythropoiesis/genetics , Zebrafish/genetics , Zebrafish/metabolism , Humans , Animals , Chromatin/metabolism , Chromatin/genetics , Erythrocytes/metabolism , 3' Untranslated Regions/genetics , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Cell Differentiation/genetics
2.
Blood Adv ; 7(22): 6898-6912, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37729429

ABSTRACT

Hemogenic endothelial cells (HECs) are specialized cells that undergo endothelial-to-hematopoietic transition (EHT) to give rise to the earliest precursors of hematopoietic progenitors that will eventually sustain hematopoiesis throughout the lifetime of an organism. Although HECs are thought to be primarily limited to the aorta-gonad-mesonephros (AGM) during early development, EHT has been described in various other hematopoietic organs and embryonic vessels. Though not defined as a hematopoietic organ, the lung houses many resident hematopoietic cells, aids in platelet biogenesis, and is a reservoir for hematopoietic stem and progenitor cells (HSPCs). However, lung HECs have never been described. Here, we demonstrate that the fetal lung is a potential source of HECs that have the functional capacity to undergo EHT to produce de novo HSPCs and their resultant progeny. Explant cultures of murine and human fetal lungs display adherent endothelial cells transitioning into floating hematopoietic cells, accompanied by the gradual loss of an endothelial signature. Flow cytometric and functional assessment of fetal-lung explants showed the production of multipotent HSPCs that expressed the EHT and pre-HSPC markers EPCR, CD41, CD43, and CD44. scRNA-seq and small molecule modulation demonstrated that fetal lung HECs rely on canonical signaling pathways to undergo EHT, including TGFß/BMP, Notch, and YAP. Collectively, these data support the possibility that post-AGM development, functional HECs are present in the fetal lung, establishing this location as a potential extramedullary site of de novo hematopoiesis.


Subject(s)
Hemangioblasts , Hematopoiesis , Animals , Mice , Humans , Hematopoietic Stem Cells/metabolism , Cell Differentiation , Endothelium , Hemangioblasts/metabolism
3.
Cell Rep ; 40(3): 111103, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858567

ABSTRACT

Red blood cells (RBCs) (erythrocytes) are the simplest primary human cells, lacking nuclei and major organelles and instead employing about a thousand proteins to dynamically control cellular function and morphology in response to physiological cues. In this study, we define a canonical RBC proteome and interactome using quantitative mass spectrometry and machine learning. Our data reveal an RBC interactome dominated by protein homeostasis, redox biology, cytoskeletal dynamics, and carbon metabolism. We validate protein complexes through electron microscopy and chemical crosslinking and, with these data, build 3D structural models of the ankyrin/Band 3/Band 4.2 complex that bridges the spectrin cytoskeleton to the RBC membrane. The model suggests spring-like compression of ankyrin may contribute to the characteristic RBC cell shape and flexibility. Taken together, our study provides an in-depth view of the global protein organization of human RBCs and serves as a comprehensive resource for future research.


Subject(s)
Ankyrins , Erythrocytes , Ankyrins/metabolism , Cytoskeleton/metabolism , Erythrocytes/metabolism , Humans , Proteome/metabolism , Spectrin/metabolism
4.
Commun Biol ; 5(1): 343, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35411071

ABSTRACT

Polycomb Repressive Complex 2 (PRC2) is an epigenetic regulator required for gene silencing during development. Although PRC2 is a well-established RNA-binding complex, the biological function of PRC2-RNA interaction has been controversial. Here, we study the gene-regulatory role of the inhibitory PRC2-RNA interactions. We report a nuclear long non-coding RNA, LEVER, which mapped 236 kb upstream of the ß-globin cluster as confirmed by Nanopore sequencing. LEVER RNA interacts with PRC2 in its nascent form, and this prevents the accumulation of the H3K27 repressive histone marks within LEVER locus. Interestingly, the accessible LEVER chromatin, in turn, suppresses the chromatin interactions between the ε-globin locus and ß-globin locus control region (LCR), resulting in a repressive effect on ε-globin gene expression. Our findings validate that the nascent RNA-PRC2 interaction inhibits local PRC2 function in situ. More importantly, we demonstrate that such a local process can in turn regulate the expression of neighboring genes.


Subject(s)
Polycomb Repressive Complex 2 , RNA, Long Noncoding , Chromatin/genetics , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Protein Binding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , epsilon-Globins/genetics , epsilon-Globins/metabolism
5.
Cytometry A ; 101(11): 903-908, 2022 11.
Article in English | MEDLINE | ID: mdl-35253987

ABSTRACT

Hematopoietic stem cells (HSCs) reside at the top of the hematopoietic hierarchy and can give rise to all the mature blood cell types in our body, while at the same time maintaining a pool of HSCs through self-renewing divisions. This potential is reflected in their functional definition as cells that are capable of long-term multi-lineage engraftment upon transplantation. While all HSCs meet these criteria, subtle differences exist between developmentally different populations of these cells. Here we present a comprehensive overview of traditional and more recently described markers for phenotyping HSCs and their downstream progeny. To address the need to assess the growing number of surface molecules expressed in various HSC-enriched fractions at different developmental stages, we have developed an extensive multi-parameter spectral flow cytometry panel to phenotype hematopoietic stem and multipotent progenitor cells (HSC/MPPs) throughout development. In this study we then employ this panel to comprehensively profile the HSC compartment in the human fetal liver (FL), which is endowed with superior engraftment potential compared to postnatal sources. Spectral cytometry lends an improved resolution of marker expression to our comprehensive approach, allowing to extract combinatorial expression signatures of several relevant HSC/MPP markers to precisely characterize the HSC/MPP fraction in a variety of tissues.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Humans , Cell Lineage , Flow Cytometry , Biomarkers/metabolism , Liver , Hematopoiesis , Cell Differentiation
6.
Nat Commun ; 13(1): 1103, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35232959

ABSTRACT

The human hematopoietic stem cell harbors remarkable regenerative potential that can be harnessed therapeutically. During early development, hematopoietic stem cells in the fetal liver undergo active expansion while simultaneously retaining robust engraftment capacity, yet the underlying molecular program responsible for their efficient engraftment remains unclear. Here, we profile 26,407 fetal liver cells at both the transcriptional and protein level including ~7,000 highly enriched and functional fetal liver hematopoietic stem cells to establish a detailed molecular signature of engraftment potential. Integration of transcript and linked cell surface marker expression reveals a generalizable signature defining functional fetal liver hematopoietic stem cells and allows for the stratification of enrichment strategies with high translational potential. More precisely, our integrated analysis identifies CD201 (endothelial protein C receptor (EPCR), encoded by PROCR) as a marker that can specifically enrich for engraftment potential. This comprehensive, multi-modal profiling of engraftment capacity connects a critical biological function at a key developmental timepoint with its underlying molecular drivers. As such, it serves as a useful resource for the field and forms the basis for further biological exploration of strategies to retain the engraftment potential of hematopoietic stem cells ex vivo or induce this potential during in vitro hematopoietic stem cell generation.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Humans , Liver
7.
ERJ Open Res ; 6(4)2020 Oct.
Article in English | MEDLINE | ID: mdl-33123557

ABSTRACT

A workshop entitled "Stem Cells, Cell Therapies and Bioengineering in Lung Biology and Diseases" was hosted by the University of Vermont Larner College of Medicine in collaboration with the National Heart, Lung and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, the International Society for Cell and Gene Therapy and the Pulmonary Fibrosis Foundation. The event was held from July 15 to 18, 2019 at the University of Vermont, Burlington, Vermont. The objectives of the conference were to review and discuss the current status of the following active areas of research: 1) technological advancements in the analysis and visualisation of lung stem and progenitor cells; 2) evaluation of lung stem and progenitor cells in the context of their interactions with the niche; 3) progress toward the application and delivery of stem and progenitor cells for the treatment of lung diseases such as cystic fibrosis; 4) progress in induced pluripotent stem cell models and application for disease modelling; and 5) the emerging roles of cell therapy and extracellular vesicles in immunomodulation of the lung. This selection of topics represents some of the most dynamic research areas in which incredible progress continues to be made. The workshop also included active discussion on the regulation and commercialisation of regenerative medicine products and concluded with an open discussion to set priorities and recommendations for future research directions in basic and translation lung biology.

8.
STAR Protoc ; 1(2): 100102, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32954369

ABSTRACT

The protocols herein outline the use of qRT-PCR to detect the presence of SARS-CoV-2 genomic RNA in patient samples. In order to cope with potential fluctuations in supply chain and testing demands and to enable expedient adaptation of reagents and assays on hand, we include details for three parallel methodologies (one- and two-step singleplex and one-step multiplex assays). The diagnostic platforms described can be easily adapted by basic science research laboratories for SARS-CoV-2 diagnostic testing with relatively short turnaround time. For complete details on the use and execution of this protocol, please refer to Vanuytsel et al. (2020).


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Disease Notification/methods , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Humans , SARS-CoV-2/isolation & purification , Software
9.
Med ; 1(1): 152-157.e3, 2020 12 18.
Article in English | MEDLINE | ID: mdl-32838351

ABSTRACT

BACKGROUND: Significant delays in the rapid development and distribution of diagnostic testing for SARS-CoV-2 (COVID-19) infection have prevented adequate public health management of the disease, impacting the timely mapping of viral spread and the conservation of personal protective equipment. Furthermore, vulnerable populations, such as those served by the Boston Medical Center (BMC), the largest safety net hospital in New England, represent a high-risk group across multiple dimensions, including a higher prevalence of pre-existing conditions and substance use disorders, lower health maintenance, unstable housing, and a propensity for rapid community spread, highlighting the urgent need for expedient and reliable in-house testing. METHODS: We developed a SARS-CoV-2 diagnostic medium-throughput qRT-PCR assay with rapid turnaround time and utilized this Clinical Laboratory Improvement Amendments (CLIA)-certified assay for testing nasopharyngeal swab samples from BMC patients, with emergency authorization from the Food and Drug Administration (FDA) and the Massachusetts Department of Public Health. FINDINGS: The in-house testing platform displayed robust accuracy and reliability in validation studies and reduced institutional sample turnaround time from 5-7 days to less than 24 h. Of over 1,000 unique patient samples tested, 44.1% were positive for SARS-CoV-2 infection. CONCLUSIONS: This work provides a blueprint for academic centers and community hospitals lacking automated laboratory machinery to implement rapid in-house testing. FUNDING: This study was supported by funding from the Boston University School of Medicine, the National Institutes of Health, Boston Medical Center, and the Massachusetts Consortium on Pathogen Readiness (MASS CPR).


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Real-Time Polymerase Chain Reaction , Reproducibility of Results , SARS-CoV-2/genetics , Safety-net Providers , Sensitivity and Specificity
11.
Expert Rev Precis Med Drug Dev ; 4(6): 357-367, 2019.
Article in English | MEDLINE | ID: mdl-33015364

ABSTRACT

INTRODUCTION: Sickle cell anemia is a mendelian disease that is noted for the heterogeneity of its clinical expression. Because of this, providing an accurate prognosis has been a longtime quest. AREAS COVERED: Reviewed are the benefits and shortcomings of testing for the major modulators of the severity of disease, like fetal hemoglobin and α thalassemia, along with studies that have attempted to link genetic variation with sub-phenotypes of disease in a predictive fashion. Induced pluripotent stem cells driven to differentiate into erythroid precursor cells provide another area for potential patient-specific drug testing. EXPERT OPINION: Fetal hemoglobin is the strongest modulator of sickle cell anemia but simply measuring its blood levels is an insufficient means of forecasting an individual's prognosis. A more precise method would be to know the distribution of fetal hemoglobin levels across the population of red cells, an assay not yet available. Prognostic measures have been developed using genetic and other signatures, but their predictive value is suboptimal. Widely applicable assays must be developed to allow a tailored approach to using the several new treatments that are likely to be available in the near future.

12.
Blood Adv ; 2(15): 1998-2011, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30108108

ABSTRACT

Robust ß-globin expression in erythroid cells derived from induced pluripotent stem cells (iPSCs) increases the resolution with which red blood cell disorders such as sickle cell disease and ß thalassemia can be modeled in vitro. To better quantify efforts in augmenting ß-globin expression, we report the creation of a ß-globin reporter iPSC line that allows for the mapping of ß-globin expression throughout human erythropoietic development in real time at single-cell resolution. Coupling this tool with single-cell RNA sequencing (scRNAseq) identified features that distinguish ß-globin-expressing cells and allowed for the dissection of the developmental and maturational statuses of iPSC-derived erythroid lineage cells. Coexpression of embryonic, fetal, and adult globins in individual cells indicated that these cells correspond to a yolk sac erythromyeloid progenitor program of hematopoietic development, representing the onset of definitive erythropoiesis. Within this developmental program, scRNAseq analysis identified a gradient of erythroid maturation, with ß-globin-expressing cells showing increased maturation. Compared with other cells, ß-globin-expressing cells showed a reduction in transcripts coding for ribosomal proteins, increased expression of members of the ubiquitin-proteasome system recently identified to be involved in remodeling of the erythroid proteome, and upregulation of genes involved in the dynamic translational control of red blood cell maturation. These findings emphasize that definitively patterned iPSC-derived erythroblasts resemble their postnatal counterparts in terms of gene expression and essential biological processes, confirming their potential for disease modeling and regenerative medicine applications.


Subject(s)
Erythroblasts/metabolism , Erythropoiesis , Gene Expression Regulation , Induced Pluripotent Stem Cells/metabolism , beta-Globins/biosynthesis , Cell Line, Transformed , Erythroblasts/cytology , Humans , Induced Pluripotent Stem Cells/cytology
13.
Stem Cells ; 36(7): 1004-1019, 2018 07.
Article in English | MEDLINE | ID: mdl-29569827

ABSTRACT

Induced pluripotent stem cells (iPSCs) stand to revolutionize the way we study human development, model disease, and eventually, treat patients. However, these cell sources produce progeny that retain embryonic and/or fetal characteristics. The failure to mature to definitive, adult-type cells is a major barrier for iPSC-based disease modeling and drug discovery. To directly address these concerns, we have developed a chemically defined, serum and feeder-free-directed differentiation platform to generate hematopoietic stem-progenitor cells (HSPCs) and resultant adult-type progeny from iPSCs. This system allows for strict control of signaling pathways over time through growth factor and/or small molecule modulation. Through direct comparison with our previously described protocol for the production of primitive wave hematopoietic cells, we demonstrate that induced HSPCs are enhanced for erythroid and myeloid colony forming potential, and strikingly, resultant erythroid-lineage cells display enhanced expression of adult ß globin indicating definitive pathway patterning. Using this system, we demonstrate the stage-specific roles of two key signaling pathways, Notch and the aryl hydrocarbon receptor (AHR), in the derivation of definitive hematopoietic cells. We illustrate the stage-specific necessity of Notch signaling in the emergence of hematopoietic progenitors and downstream definitive, adult-type erythroblasts. We also show that genetic or small molecule inhibition of the AHR results in the increased production of CD34+ CD45+ HSPCs while conversely, activation of the same receptor results in a block of hematopoietic cell emergence. Results presented here should have broad implications for hematopoietic stem cell transplantation and future clinical translation of iPSC-derived blood cells. Stem Cells 2018;36:1004-1019.


Subject(s)
Hematopoiesis/physiology , Induced Pluripotent Stem Cells/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Notch/genetics , Cell Differentiation , Humans , Signal Transduction
15.
Stem Cell Reports ; 8(4): 1076-1085, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28111279

ABSTRACT

Sickle cell anemia affects millions of people worldwide and is an emerging global health burden. As part of a large NIH-funded NextGen Consortium, we generated a diverse, comprehensive, and fully characterized library of sickle-cell-disease-specific induced pluripotent stem cells (iPSCs) from patients of different ethnicities, ß-globin gene (HBB) haplotypes, and fetal hemoglobin (HbF) levels. iPSCs stand to revolutionize the way we study human development, model disease, and perhaps eventually, treat patients. Here, we describe this unique resource for the study of sickle cell disease, including novel haplotype-specific polymorphisms that affect disease severity, as well as for the development of patient-specific therapeutics for this phenotypically diverse disorder. As a complement to this library, and as proof of principle for future cell- and gene-based therapies, we also designed and employed CRISPR/Cas gene editing tools to correct the sickle hemoglobin (HbS) mutation.


Subject(s)
Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , CRISPR-Cas Systems , Genetic Therapy , Hemoglobin, Sickle/genetics , Induced Pluripotent Stem Cells/metabolism , beta-Globins/genetics , Adolescent , Adult , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/ethnology , Base Sequence , Cell Line , Cells, Cultured , Child , Child, Preschool , Erythroid Cells/cytology , Erythroid Cells/metabolism , Female , Fetal Hemoglobin/analysis , Genetic Therapy/methods , Haplotypes , Humans , Induced Pluripotent Stem Cells/cytology , Male , Middle Aged , Point Mutation , Polymorphism, Genetic , Transcriptome , Young Adult
16.
J Vis Exp ; (117)2016 11 20.
Article in English | MEDLINE | ID: mdl-27911376

ABSTRACT

Even with the revolution of gene-targeting technologies led by CRISPR-Cas9, genetic modification of human pluripotent stem cells (hPSCs) is still time consuming. Comparative studies that use recombinant lines with transgenes integrated into safe harbor loci could benefit from approaches that use site-specific targeted recombinases, like Cre or FLPe, which are more rapid and less prone to off-target effects. Such methods have been described, although they do not significantly outperform gene targeting in most aspects. Using Zinc-finger nucleases, we previously created a master cell line in the AAVS1 locus of hPSCs that contains a GFP-Hygromycin-tk expressing cassette, flanked by heterotypic FRT sequences. Here, we describe the procedures to perform FLPe recombinase-mediated cassette exchange (RMCE) using this line. The master cell line is transfected with a RMCE donor vector, which contains a promoterless Puromycin resistance, and with FLPe recombinase. Application of both a positive (Puromycin) and negative (FIAU) selection program leads to the selection of RMCE without random integrations. RMCE generates fully characterized pluripotent polyclonal transgenic lines in 15 d with 100% efficiency. Despite the recently described limitations of the AAVS1 locus, the ease of the system paves the way for hPSC transgenesis in isogenic settings, is necessary for comparative studies, and enables semi-high-throughput genetic screens for gain/loss of function analysis that would otherwise be highly time consuming.


Subject(s)
Pluripotent Stem Cells , Recombination, Genetic , Cell Line , Gene Targeting , Humans , Recombinases , Transgenes
17.
Stem Cell Reports ; 5(5): 918-931, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26455413

ABSTRACT

Tools for rapid and efficient transgenesis in "safe harbor" loci in an isogenic context remain important to exploit the possibilities of human pluripotent stem cells (hPSCs). We created hPSC master cell lines suitable for FLPe recombinase-mediated cassette exchange (RMCE) in the AAVS1 locus that allow generation of transgenic lines within 15 days with 100% efficiency and without random integrations. Using RMCE, we successfully incorporated several transgenes useful for lineage identification, cell toxicity studies, and gene overexpression to study the hepatocyte lineage. However, we observed unexpected and variable transgene expression inhibition in vitro, due to DNA methylation and other unknown mechanisms, both in undifferentiated hESC and differentiating hepatocytes. Therefore, the AAVS1 locus cannot be considered a universally safe harbor locus for reliable transgene expression in vitro, and using it for transgenesis in hPSC will require careful assessment of the function of individual transgenes.


Subject(s)
Embryonic Stem Cells/metabolism , Gene Targeting/methods , Hepatocytes/cytology , Induced Pluripotent Stem Cells/metabolism , Recombinases/metabolism , Transgenes , Cells, Cultured , DNA Methylation , Dependovirus/genetics , Embryonic Stem Cells/cytology , Gene Silencing , Genetic Loci , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Recombinases/genetics
18.
Stem Cell Reports ; 4(1): 16-24, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25556567

ABSTRACT

To understand how haploinsufficiency of progranulin (PGRN) causes frontotemporal dementia (FTD), we created induced pluripotent stem cells (iPSCs) from patients carrying the GRN(IVS1+5G > C) mutation (FTD-iPSCs). FTD-iPSCs were fated to cortical neurons, the cells most affected in FTD. Although generation of neuroprogenitors was unaffected, their further differentiation into CTIP2-, FOXP2-, or TBR1-TUJ1 double-positive cortical neurons, but not motorneurons, was significantly decreased in FTD-neural progeny. Zinc finger nuclease-mediated introduction of GRN cDNA into the AAVS1 locus corrected defects in cortical neurogenesis, demonstrating that PGRN haploinsufficiency causes inefficient cortical neuron generation. RNA sequencing analysis confirmed reversal of the altered gene expression profile following genetic correction. We identified the Wnt signaling pathway as one of the top defective pathways in FTD-iPSC-derived neurons, which was reversed following genetic correction. Differentiation of FTD-iPSCs in the presence of a WNT inhibitor mitigated defective corticogenesis. Therefore, we demonstrate that PGRN haploinsufficiency hampers corticogenesis in vitro.


Subject(s)
Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Gene Expression , Induced Pluripotent Stem Cells/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Neurogenesis/genetics , Neurons/metabolism , Biomarkers , Cell Differentiation , Cell Line , Frontotemporal Dementia/therapy , Gene Expression Profiling , Haploinsufficiency , Humans , Induced Pluripotent Stem Cells/cytology , Intercellular Signaling Peptides and Proteins/metabolism , Mutation , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Phenotype , Progranulins , Time Factors , Transcription, Genetic , Transcriptome , Wnt Signaling Pathway
19.
Stem Cell Res ; 13(2): 240-50, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25108529

ABSTRACT

Fanconi anemia (FA) is an autosomal recessive disorder characterized by progressive bone marrow failure (BMF) during childhood, aside from numerous congenital abnormalities. FA mouse models have been generated; however, they do not fully mimic the hematopoietic phenotype. As there is mounting evidence that the hematopoietic impairment starts already in utero, a human pluripotent stem cell model would constitute a more appropriate system to investigate the mechanisms underlying BMF in FA and its developmental basis. Using zinc finger nuclease (ZFN) technology, we have created a knockout of FANCA in human embryonic stem cells (hESC). We introduced a selection cassette into exon 2 thereby disrupting the FANCA coding sequence and found that whereas mono-allelically targeted cells retain an unaltered proliferation potential, disruption of the second allele causes a severe growth disadvantage. As a result, heterogeneous cultures arise due to the presence of cells still carrying an unaffected FANCA allele, quickly outgrowing the knockout cells. When pure cultures of FANCA knockout hESC are pursued either through selection or single cell cloning, this rapidly results in growth arrest and such cultures cannot be maintained. These data highlight the importance of a functional FA pathway at the pluripotent stem cell stage.


Subject(s)
Cell Cycle Checkpoints , Cell Proliferation , Embryonic Stem Cells/metabolism , Fanconi Anemia Complementation Group A Protein/metabolism , Gene Knockdown Techniques , Pluripotent Stem Cells/metabolism , Cell Line , Coculture Techniques , Down-Regulation , Embryonic Stem Cells/pathology , Exons , Fanconi Anemia Complementation Group A Protein/genetics , Feeder Cells , Gene Expression Regulation, Developmental , Genotype , Humans , Phenotype , Pluripotent Stem Cells/pathology , Signal Transduction , Time Factors , Transfection
20.
Stem Cells Transl Med ; 3(4): 489-99, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24493854

ABSTRACT

Pancreatic endocrine progenitors obtained from human embryonic stem cells (hESCs) represent a promising source to develop cell-based therapies for diabetes. Although endocrine pancreas progenitor cells have been isolated from mouse pancreata on the basis of Ngn3 expression, human endocrine progenitors have not been isolated yet. As substantial differences exist between human and murine pancreas biology, we investigated whether it is possible to isolate pancreatic endocrine progenitors from differentiating hESC cultures by lineage tracing of NGN3. We targeted the 3' end of NGN3 using zinc finger nuclease-mediated homologous recombination to allow selection of NGN3eGFP(+) cells without disrupting the coding sequence of the gene. Isolated NGN3eGFP(+) cells express PDX1, NKX6.1, and chromogranin A and differentiate in vivo toward insulin, glucagon, and somatostatin single hormone-expressing cells but not to ductal or exocrine pancreatic cells or other endodermal, mesodermal, or ectodermal lineages. This confirms that NGN3(+) cells represent pancreatic endocrine progenitors in humans. In addition, this hESC reporter line constitutes a unique tool that may aid in gaining insight into the developmental mechanisms underlying fate choices in human pancreas and in developing cell-based therapies.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Cell Differentiation/physiology , Embryonic Stem Cells/metabolism , Gene Expression Regulation/physiology , Islets of Langerhans/metabolism , Nerve Tissue Proteins/biosynthesis , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Line , Cell- and Tissue-Based Therapy , Chromogranin A/biosynthesis , Chromogranin A/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/transplantation , Heterografts , Homeodomain Proteins/biosynthesis , Homeodomain Proteins/genetics , Humans , Islets of Langerhans/cytology , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Trans-Activators/biosynthesis , Trans-Activators/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...