Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Opt Lett ; 47(17): 4347-4350, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36048650

ABSTRACT

We present an all-fiber optical parametric chirped-pulse amplification integrated system delivering a single-mode polarized beam. The system makes use of a specifically designed solid-core photonic hybrid fiber (i.e., combining modified total internal reflection and photonic bandgap mechanisms) that ensures sufficient birefringence to maintain the signal polarization. Moreover, the fiber combines a large mode area to handle energetic pump pulses (without generating damage or unwanted nonlinear effects) and weak dispersion to generate parametric gain bands broad enough to amplify ultrashort pulses. An efficient parametric process allows for obtaining a very high gain (>45 dB) with an output pulse energy reaching µJ range at 1053 nm by using a single 5-m hybrid fiber amplifier.

2.
Opt Lett ; 46(11): 2698-2701, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34061091

ABSTRACT

We present the experimental investigation of timing jitter and relative intensity noise of a Mamyshev ring oscillator operating in the fundamental mode-lock regime. We find that both timing jitter and intensity noise spectra are correlated to the output optical power with noise increase close to the loss of the mode-locking. In addition, we have investigated the dependence of the spectral filters wavelength separation on both timing jitter and intensity noise showing a severe degradation with filters overlapping.

3.
Opt Lett ; 45(7): 1946-1949, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32236049

ABSTRACT

This Letter reports on a large mode area pixelated Bragg fiber in which some high refractive index rods were replaced by boron-doped rods that allows polarization maintaining behavior while keeping single-mode behavior. The realized all-solid fiber has a core diameter of 35 µm. The fundamental mode is circular with a 25 µm mode field diameter around 1 µm wavelength, and the polarization extinction ratio reaches 30 dB. Finally, this fiber is single-mode and bendable up to a 20 cm radius with fundamental mode losses lower than 0.3 dB/m.

4.
Opt Lett ; 45(6): 1395-1398, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-32163974

ABSTRACT

In this Letter, we present the first, to the best of our knowledge, experimental demonstration of high-order harmonic mode-locking of an all-fiber Mamyshev oscillator. The laser is entirely realized using standard step-index fiber. It delivers time-stable pulse trains with average powers reaching more than 100 mW at the fundamental mode-locked repetition rate (7.7 MHz) and 1.3 W at the 14th harmonic (107.8 MHz).

5.
Opt Lett ; 43(15): 3638-3641, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30067643

ABSTRACT

We report two-photon lensless imaging through a novel Fermat's golden spiral multicore fiber. This unique layout optimizes the sidelobe levels, field of view, crosstalk, group delay, and mode density to achieve a sidelobe contrast of at least 10.9 dB. We demonstrate experimentally the ability to generate and scan a focal point with femtosecond pulses and perform two-photon imaging.

6.
Opt Express ; 25(25): 31863-31875, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-29245856

ABSTRACT

We examine the impact of fiber bends on ultrashort pulse propagation in a 169-core multicore fiber (MCF) by numerical simulations and experimental measurements. We show that an L-shaped bend (where only one end of the MCF is fixed) induces significant changes in group delays that are a function of core position but linear along the bending axis with a slope directly proportional to the bending angle. For U- and S-shaped bends (where both ends of the MCF are fixed) the induced refractive index and group delay changes are much smaller than the residual, intrinsic inter-core group delay differences of the unbent MCF. We further show that when used for point-scanning lensless endoscopy with ultrashort pulse excitation, bend-induced group delays in the MCF degrade the point-spread function due to spatiotemporal coupling. Our results show that bend-induced effects in MCFs can be parametrized with only two parameters: the angle of the bend axis and the amplitude of the bend. This remains valid for bend amplitudes up to at least 200 degrees.

7.
Opt Lett ; 42(7): 1408-1411, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28362781

ABSTRACT

Accurate control of both the doping distribution inside the fiber core and the low refractive index contrast between the fiber core and cladding materials is essential for the development of high-power fiber lasers based on the use of single-mode large-mode-area (LMA) optical fibers. Herein, sol-gel monolithic F/Yb3+-codoped silica glasses were prepared from porous large silica xerogels doped with ytterbium salt solution, which had been subjected to fluorination with hexafluoroethane gas, before subsequent sintering. The fluorine content inside the doped glass has been varied by adjusting the fluorination duration. The space homogeneity of fluorine and ytterbium concentrations in the cylindrical preforms has been checked by chemical analysis and Raman spectroscopy. Moreover, the glass with the lowest fluorine content has been successfully integrated as a core material in a microstructured optical fiber made using the stack-and-draw method. This fiber was tested in an all-fiber cavity laser architecture to evaluate potential lasing performances of the F/Yb3+-codoped silica glass. It presents a maximum efficiency of 70.4%, achieved at 1031 nm from a 1.16 m length fiber. These results confirm the potentialities of the obtained F/Yb3+-codoped glasses for the fabrication of LMA optical fiber lasers.

8.
Opt Express ; 25(3): 2377-2390, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-29519084

ABSTRACT

We developed a generalized field-propagating model for active optical fibers that takes into account mode beating and mode coupling through the amplifying medium. We applied the model to the particular case of a few-mode erbium doped fiber amplifier. Results from the model predict that mode coupling mediated by the amplifying medium is very low. Furthermore, we applied the model to a typical amplifier configuration. In this particular configuration, the new model predicts much lower differential modal gain than that predicted by a classical intensity model.

9.
Opt Express ; 24(5): 4761-4770, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-29092305

ABSTRACT

This paper reports the design and the fabrication of an all-solid photonic bandgap fiber with core diameter larger than 100 µm, a record effective mode area of about 3700 µm2 at 1035 nm and robust single-mode behavior on propagation length as short as 90 cm. These properties are obtained by using a pixelated Bragg fiber geometry together with an heterostructuration of the cladding and the appropriated generalized half wave stack condition applied to the first three higher order modes. We detail the numerical study that permitted to select the most efficient cladding geometry and present the experimental results that validate our approach.

10.
Opt Express ; 23(25): 32496-503, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26699039

ABSTRACT

We report, through numerical simulations and experimental data, the first successful fabrication of a polarization maintaining single-mode fiber delivering a flat top intensity profile at 1.05 µm. A high quality flat mode was obtained and single-mode behavior was checked by shifting the injection and by S² imaging method. Numerical investigations were performed to show that it would be possible to increase further the 0.6x10⁻4 experimental group birefringence.

11.
Opt Lett ; 40(10): 2389-92, 2015 May 15.
Article in English | MEDLINE | ID: mdl-26393747

ABSTRACT

All-fiber ultraviolet (UV) light sources are of great practical interest for a multitude of applications spanned across different sectors, from industrial processes such as nonthermal, high-resolution materials processing, to biomedical applications such as eye surgery, to name a few. However, production of UV light sources with high beam quality has been a problem to this day as the fiber designs required to reach UV wavelengths by four-wave mixing with widely available pumps (i.e., 532 nm) are challenging because of their small size and increased risk of material damage. In this Letter, a specific pumping scheme is presented that allows the conversion of two pump photons in different modes to UV light in the fundamental mode and the corresponding idler in a higher order mode. The process has also been shown to work experimentally, and UV light at 390.5 nm in the fundamental mode was successfully generated.


Subject(s)
Optical Fibers , Photons , Ultraviolet Rays , Optical Phenomena
12.
Opt Lett ; 40(3): 363-6, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25680048

ABSTRACT

A new Pixelated Bragg Fiber design showing improved optical performances in terms of single-mode behavior and effective area is presented. The cladding is made of 3 rings of cylindrical high refractive index rods (pixels) in which some pixels are removed to act as a modal sieve for an improved rejection of Higher Order Modes (HOMs). Two half-wave-stack conditions are used to increase the confinement losses of the 3 first HOMs: LP11 and LP02-LP21 guided core modes. The realized fiber exhibits a core diameter of 48.5 µm with an effective single-mode behavior observed from 1000 nm to beyond 1700 nm even for a 1-m-long straight fiber. Losses prove to be low with a minimum value of 25 dB/km between 1200 and 1500 nm. Bending radius of 22.5 cm is reported for this structure without any significant extra-losses above a wavelength of 1350 nm.

13.
J Biomed Opt ; 19(8): 086021, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25157612

ABSTRACT

We present an approach for fiber delivery of femtosecond pulses relying on pulse breakup and soliton self-frequency shift in a custom-made solid-core photonic bandgap fiber. In this scheme, the fiber properties themselves ensure that a powerful Fourier-transform-limited pulse is emitted at the fiber output, hence doing away with the need for complex precompensation and enabling tunability of the excitation. We report high-energy soliton excitation for two-photon fluorescence microspectroscopy over a 100-nm range and multimodal nonlinear imaging on biological samples.


Subject(s)
Fiber Optic Technology/instrumentation , Image Enhancement/instrumentation , Lasers , Microscopy, Fluorescence, Multiphoton/instrumentation , Spectrometry, Fluorescence/instrumentation , Energy Transfer , Equipment Design , Equipment Failure Analysis , Light , Nonlinear Dynamics , Reproducibility of Results , Sensitivity and Specificity
14.
Opt Express ; 21(25): 30859-73, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24514659

ABSTRACT

The four-wave mixing process in optical fibers is generally sensitive to dispersion uniformity along the fiber length. However, some specific phase matching conditions show increased robustness to longitudinal fluctuations in fiber dimensions, which affect the dispersion, even for signal and idler wavelengths far from the pump. In this paper, we present the method by which this point is found, how the fiber design characteristics impact on the stable point and demonstrate the stability through propagation simulations using the non-linear Schrödinger equation.

15.
Opt Express ; 20(6): 6746-60, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22418559

ABSTRACT

Hybrid Photonic Crystal Fibers with a first ring of high index inclusions are studied and compared to both standard air-hole fibers and all solid photonic bandgap fibers. In such new fibers a bandgap-like core mode exists over a wide spectral range and exhibits confinement losses ten orders of magnitude smaller than those of the corresponding all-solid fiber. This particular fiber supports also a core mode guided by modified total internal reflection at long enough wavelengths. The origin and properties of these two kinds of modes are discussed in details. Such a design can also act as a mode filter (as compared to the standard air-hole structure) and could also be used to ease phase matching conditions for nonlinear optics.


Subject(s)
Fiber Optic Technology/instrumentation , Surface Plasmon Resonance/instrumentation , Computer-Aided Design , Crystallization , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
16.
Opt Express ; 17(12): 10105-12, 2009 Jun 08.
Article in English | MEDLINE | ID: mdl-19506663

ABSTRACT

Fiber Bragg Gratings with reflectivity up to 25 dB have been photo-written in the core of a 2D all-solid Photonic Bandgap Fiber without modification of the guiding properties of the fiber. This result is obtained by combining an appropriate glass composition for the high index inclusions constituting the micro-structured cladding and a photosensitive low index core. Couplings of the fundamental core guided mode with cladding modes are investigated and compared to theoretical predictions.


Subject(s)
Fiber Optic Technology/instrumentation , Refractometry/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Photons , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...