Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Syst Appl Microbiol ; 45(3): 126318, 2022 May.
Article in English | MEDLINE | ID: mdl-35364501

ABSTRACT

Three forest and four botanical garden top soil isolates with unique MALDI-TOF mass spectra were identified as Paraburkholderia strains closely related to Paraburkholderia sartisoli through recA gene sequence analysis. OrthoANIu, digital DNA-DNA hybridization analyses and phylogenomic analyses demonstrated that the five strains represented two new Paraburkholderia species closely related to P. sartisoli. The genome of strain LMG 31841T had a cumulative size of 6.3 Mb and a G + C content of 62.64 mol%; strain LMG 32171T had a genome size of 5.8 Mb and a G + C content of 62.91 mol%. Hemolysis on horse blood agar, beta-galactosidase and phosphoamidase activity, and assimilation of adipic acid and trisodium citrate allowed phenotypic differentiation of strains LMG 31841T, LMG 32171T and P. sartisoli LMG 24000T. An analysis of the genomic potential for aromatic compound degradation yielded additional differences among strains representing these three species, but also highlighted some discrepancies between the presence of genes and pathways, and the phenotype revealed through growth experiments using a mineral salts medium supplemented with single aromatic compounds as carbon sources. We propose to classify all isolates from the present study into two novel Paraburkholderia species, for which we propose the names Paraburkholderia gardini with LMG 32171T (=CECT 30344T) as the type strain, and Paraburkholderia saeva with LMG 31841T (=CECT 30338T) as the type strain.


Subject(s)
Fatty Acids , Soil Microbiology , Bacterial Typing Techniques , DNA, Bacterial/genetics , Forests , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil
2.
Article in English | MEDLINE | ID: mdl-34542391

ABSTRACT

A novel bacterium, designated strain Msb3T, was recently isolated from leaves of the yam family plant Dioscorea bulbifera (Dioscoreaceae). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that this strain belonged to the genus Paraburkholderia with Paraburkholderia xenovorans as nearest validly named neighbour taxon (99.3 % sequence similarity towards the P. xenovorans type strain). Earlier genome sequence analysis revealed a genome of 8.35 Mb in size with a G+C content of 62.5 mol%, which was distributed over two chromosomes and three plasmids. Here, we confirm that strain Msb3T represents a novel Paraburkholderia species. In silico DNA-DNA hybridization and average nucleotide identity (OrthoANIu) analyses towards P. xenovorans LB400T yielded 58.4 % dDDH and 94.5 % orthoANIu. Phenotypic and metabolic characterization revealed growth at 15 °C on tryptic soy agar, growth in the presence of 1 % NaCl and the lack of assimilation of phenylacetic acid as distinctive features. Together, these data demonstrate that strain Msb3T represents a novel species of the genus Paraburkholderia, for which we propose the name Paraburkholderia dioscoreae sp. nov. The type strain is Msb3T (=LMG 31881T, DSM 111632T, CECT 30342T).


Subject(s)
Forests , Soil Microbiology , Bacterial Typing Techniques , Base Composition , Burkholderiaceae , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phospholipids , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Ubiquinone
3.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209778

ABSTRACT

We performed a taxonomic and comparative genomics analysis of 67 novel Paraburkholderia isolates from forest soil. Phylogenetic analysis of the recA gene revealed that these isolates formed a coherent lineage within the genus Paraburkholderia that also included Paraburkholderiaaspalathi, Paraburkholderiamadseniana, Paraburkholderiasediminicola, Paraburkholderiacaffeinilytica, Paraburkholderiasolitsugae and Paraburkholderiaelongata and four unidentified soil isolates from earlier studies. A phylogenomic analysis, along with orthoANIu and digital DNA-DNA hybridization calculations revealed that they represented four different species including three novel species and P. aspalathi. Functional genome annotation of the strains revealed several pathways for aromatic compound degradation and the presence of mono- and dioxygenases involved in the degradation of the lignin-derived compounds ferulic acid and p-coumaric acid. This co-occurrence of multiple Paraburkholderia strains and species with the capacity to degrade aromatic compounds in pristine forest soil is likely caused by the abundant presence of aromatic compounds in decomposing plant litter and may highlight a diversity in micro-habitats or be indicative of synergistic relationships. We propose to classify the isolates representing novel species as Paraburkholderia domus with LMG 31832T (=CECT 30334) as the type strain, Paraburkholderia nemoris with LMG 31836T (=CECT 30335) as the type strain and Paraburkholderia haematera with LMG 31837T (=CECT 30336) as the type strain and provide an emended description of Paraburkholderia sediminicola Lim et al. 2008.


Subject(s)
Burkholderiaceae/classification , Burkholderiaceae/genetics , Hydrocarbons, Aromatic/metabolism , Bacterial Typing Techniques , Burkholderiaceae/isolation & purification , Burkholderiaceae/metabolism , Coumaric Acids/metabolism , Coumaric Acids/pharmacokinetics , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Environmental Restoration and Remediation/methods , Forests , Genome, Bacterial , Hydrocarbons, Aromatic/pharmacokinetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Rec A Recombinases/analysis , Rec A Recombinases/genetics , Sequence Analysis, DNA , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...