Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Phys Chem Chem Phys ; 18(4): 2535-47, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26700657

ABSTRACT

Core-valence double ionisation spectra of acetaldehyde (ethanal) are presented at photon energies above the carbon and oxygen 1s ionisation edges, measured by a versatile multi-electron coincidence spectroscopy technique. We use this molecule as a testbed for analyzing core-valence spectra by means of quantum chemical calculations of transition energies. These theoretical approaches range from two simple models, one based on orbital energies corrected by core valence interaction and one based on the equivalent core approximation, to a systematic series of quantum chemical electronic structure methods of increasing sophistication. The two simple models are found to provide a fast orbital interpretation of the spectra, in particular in the low energy parts, while the coverage of the full spectrum is best fulfilled by correlated models. CASPT2 is the most sophisticated model applied, but considering precision as well as computational costs, the single and double excitation configuration interaction model seems to provide the best option to analyze core-valence double hole spectra.

2.
J Mass Spectrom ; 46(9): 901-7, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21915954

ABSTRACT

In this work, the photofragmentation subsequent to valence and Cd4d photoionization of cadmium dichloride (CdCl(2)) were studied using He I and synchrotron excitation. The measurements were performed with a photoelectron-photoion coincidence (PEPICO) setup, and the connection between the singly ionized electronic states and cationic fragments was investigated. The valence-ionized states were found to lead to CdCl(2)(+), Cd(+) and CdCl(+). The Cd4d(- 1) states were found to lead only to Cl(+) ions. The observed charge transfer effect between Cd and Cl was concluded to take place due to internal conversion or fluorescence decay to dissociating valence states either directly or through consecutive fragmentation. The fragmentation energetics were investigated with molecular ab initio calculations, and the calculated energies were found to agree with the detected fragment appearances.

SELECTION OF CITATIONS
SEARCH DETAIL
...