Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 46(12): 3816-3819, 2017 Mar 21.
Article in English | MEDLINE | ID: mdl-28251205

ABSTRACT

We describe an entirely new type of tetrahedral cluster, representing a new level of structural hierarchy: a hybrid tetrahedron of supertetrahedra, formed by five T3 supertetrahedral clusters connected by bipyridyl linkers. Covalent assembly of these 37 Å super-supertetrahedra with smaller (10 Å) T3 clusters results in the formation of a two-dimensional covalent network which contains pores in the mesoporous range.

2.
Phys Chem Chem Phys ; 17(47): 31735-40, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26559565

ABSTRACT

Understanding the underlying mechanisms that suppress thermal conduction in solids is of paramount importance for the targeted design of materials for thermal management and thermoelectric energy conversion applications. Bismuth copper oxychalcogenides, BiOCuQ (Q = Se, Te), are highly crystalline thermoelectric materials with an unusually low lattice thermal conductivity of ∼0.5 Wm(-1) K(-1), a value normally found in amorphous materials. Here we unveil the origin of the unusual thermal transport properties of these phases. First principles calculations of the vibrational properties combined with analysis of in-situ neutron diffraction data, demonstrate that weak bonding of copper atoms within the structure leads to an unexpected vibrational mode at low frequencies, which is likely to be a major contributor to the low thermal conductivity of these materials. In addition, we show that anharmonicity and the large Grüneisen parameter in these oxychalcogenides are mainly related to the low frequency copper vibrations, rather than to the Bi(3+) lone pairs.

3.
Dalton Trans ; 44(4): 1592-600, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25426726

ABSTRACT

The synthesis and characterization of five new indium selenides, [C9H17N2]3[In5Se(8+x)(Se2)(1-x)] (1-2), [C6H12N2]4[C6H14N2]3[In10Se15(Se2)3] (3), [C6H14N2][(C6H12N2)2NaIn5Se9] (4) and [enH2][NH4][In7Se12] (5), are described. These materials were prepared under solvothermal conditions, using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,4-diazabicyclo[2.2.2]octane (DABCO) as structure-directing agents. Compounds 1-4 represent the first examples of ribbons in indium selenides, and 4 is the first example of incorporation of an alkali metal complex. Compounds 1, 2 and 4 contain closely related [In5Se(8+x)(Se2)(1-x)](3-) ribbons which differ only in their content of (Se2)(2-) anions. These ribbons are interspaced by organic countercations in 1 and 2, while in 4 they are linked by highly unusual [Na(DABCO)2](+) units into a three-dimensional framework. Compound 3 contains complex ribbons, with a long repeating sequence of ca. 36 Å, and 4 is a non-centrosymmetric three-dimensional framework, formed as a consequence of the decomposition of DABCO into ethylenediamine (en) and ammonia.

SELECTION OF CITATIONS
SEARCH DETAIL
...